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Kalda Mechanics 1

Preface

Jaan Kalda’s handouts are beloved by physics students both in for a quick challenge, to students preparing for
international Olympiads. As of writing, the current mechanics handout (ver 1.2) has 86 unique problems and
74 main ‘ideas’.

This solutions manual came as a pilot project from the online community at artofproblemsolving.com.
Although there were detailed hints provided, full solutions have never been written. The majority of the
solutions seen here were written on a private forum given to those who wanted to participate in making
solutions. In an amazing show of an online collaboration, students from around the world came together to
discuss ideas and methods and created what we see today.

This project would not have been possible without the countless contributions from members of the com-
munity. Online usernames were used for those who did not wish to be named:

Heramb Podar, Ameya Deshmukh, Viraj Jayam, Rakshit, dbs27, Anant Lunia, Jai, Sean Chen, Ayon Ghosh,
Joshua S, Tarun Agarwal, c deng

Structure of The Solutions Manual

Each chapter in this solutions manual will be directed towards a section given in Kalda’s mechanics handout.
There are three major chapters: statics, dynamics, and revision problems. If you are stuck on a problem,
cannot make progress even with the hint, and come here for reference, look at only the start of the solution,
then try again. Looking at the entire solution wastes the problem for you and ruins an opportunity for yourself
to improve.

Contact Us

Despite editing, there is almost zero probability that there are no mistakes inside this book. If there are any
mistakes, you want to add a remark, have a unique solution, or know the source of a specific problem, then
please contact us at hello@physoly.tech. The most current and updated version can be found on our website
physoly.tech

Please feel free to contact us at the same email if you are confused on a solution. Chances are that many
others will have the same question as you.
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Kalda Mechanics 2

1 Solutions to Statics Problems

This section will consist of the solutions to problems from problem 1-23 of the handout. Statics is typically the
analysis of objects not in motion. However, objects travelling at constant velocity or with a uniform acceleration
can be treated as a statics problem with a frame of reference change. This usually involves balancing forces,
torques, and more to achieve equilibrium.

pr 1. The hardest thing about this problem, as Kalda noted, was drawing a diagram. Here we provide
a diagram for us to work with. Let O be the center of the hoop and A the center of the revolving shaft.

NµN

O

A

mg

θ

α

β

Q

Let Q be the vector sum of the friction and normal forcesa,

Q =
√
µ2N2 +N2 = N

√
µ2 + 1

because the system is in equilibrium, then the frictional force, µN , must be equal to mg sin θ. We also
know by simple trigonometry that µN = Q sin θ. Therefore, because the sum of forces are zero we have,

µN = mg sin θ = N
√
µ2 + 1 sin θ.

We must now establish this relation in terms of β. One may look towards a torque analysis, however a
more elegant mathematical approach is by the law of sines. We know by law of sines that

sinβ

r
=

sin θ

r + `
=⇒ sin θ =

(r + `) sinβ

r

Substituting this in for sin θ we find

µN = N
√
µ2 + 1

(r + `) sinβ

r

sinβ =
rµ

(r + `)
√
µ2 + 1

=⇒ β = sin−1

(
rµ

(r + `)
√
µ2 + 1

)
aThe frictional force is not constant throughout the entire process of slipping however it is maximum (or µN) when the

shaft is at equilibrium angle.
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Kalda Mechanics 3

pr 2.

α

α

θ

θ

R

B

Let the angle formed from the mass, the center of the cylinder O, and the vertical be θ. By summing
forces on the mass, we get

mg sin θ − µmg cos θ = 0 =⇒ µ = tan θ.

This is unsurprising, as it is the typical condition for an object to not slip. You can verify yourself
that the effective angle of the incline is equal to the angle the normal force makes with the vertical, θ.
Next, we sum up the torques with respect to the contact point between the ramp and the cylinder. The
moment arm for the cylinder is R sinα and the moment arm for the block is R sin θ−R sinα. Therefore,
we can write the torque balance equation as:

(M +m)g sinα = mg sin θ

Because tan θ = µ, we have a right triangle that can be constructed:

µ

√
µ2 + 1

1

θ

Therefore, sin θ = µ√
µ2+1

. Substituting this result into our equation of sum of torques at point P gives

us
(M +m)g sinα = mg

µ√
µ2 + 1

which implies the answer is

α = arcsin
( m

M +m

µ√
µ2 + 1

)
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.

Solution 2: First, consider just the block in the cylinder. If the surface the block is on makes an angle
µ = tan θ with the horizontal, then it will be on the verge of slipping. During static equilibrium, a tiny
disturbance will not affect the total energy. We can represent the rotation in two steps. First, we purely
translate the center of the cylinder by a distance Rdθ. Then, we purely rotate the cylinder about the
center by an angle dθ. We can sum up the change in potential energy in these two steps and sum it to
zero.

By translating the cylinder a downwards distance of Rdθ along the ramp, we are changing the potential
energy by:

dUcylinder = −(M +m)g(Rdθ)(sinα)

Next up, we rotate the cylinder counterclockwise by an angle dθ. This will cause the block to rise and
increase its potential energy by:

dUblock = mgR sin θdθ

We know that the total energy change will be zero (since dU
dθ = 0 at a local minimum) so we have:

0 = −(M +m)gR sinαdθ +mgR sin θdθ

(M +m) sinα = m sin θ

sinα =
m sin θ

M +m

We can determine sin θ by using the fact that tan θ = µ which gives us:

α = sin−1

(
mµ

(M +m)
√
µ2 + 1

)

pr 3.

A B

C D

M

mg
F

Due to symmetry of the system and by the fact that AB − CD = CD = AC = BD, we see that

∠CAB = ∠DBA = 60◦

such that AC cos∠CAB = AC
2 . Now consider the net torque acting on rod CD about the meeting point

of extended AC and DB, which we call M . The tension forces due to rods AC and DB pass through
M and exert no torque. The only torques are due to mg and F . The torque due to mg is

mg` sin 30◦ =
mg`

2
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Kalda Mechanics 5

where ` ≡MC = MD = CD. For the minimum value of F , it must point perpendicular to MB and its
value must be

mg`

2`
=

mg

2

By using symmetry, we can determine angle ∠C = ∠D = 120◦ of the isosceles trapezoid. We will use
fact 20 cited in the handout which in brief states that if a mass-less rod is freely hinged at both ends,
the force at the hinge must point along the rod. This is the only way for the torque to be zero.
Therefore, the rod AC must provide an upwards force of mg. By using the given angle above and
breaking the force up into its components, we can see that the horizontal force is mg tan 30◦. This must
also be the horizontal force the rod exerts on hinge D due to Newton’s third law. Therefore, we know
that the vertical forces BD and F exerts on D has to sum up to zero and their horizontal forces have to
sum up to mg/2. Therefore, we have:

F cos θ + T sin 30◦ = mg tan 30◦

and
F sin θ = T cos 30◦

Combining them together to remove T gives:

F

(
cos θ +

sin θ√
3

)
= mg/2

You can minimize F by taking the derivative or you can recognize that the second part of the left hand
side reaches a maximum of √

12 +

(
1√
3

)2

=
2√
3

so the minimum F is achieved when this value is reached or:

F

(
2√
3

)
=
mg√

3

F =
mg

2

The same problem was presented in the book Problems in Physics by SS Krotov.

pr 4. Let’s just tackle part B straight away. Part A follows the same reasoning and can be derived
through part B. The normal force is given by:

N = mg cosα− F sin θ

While adding forces in the direction along the plane gives (assuming maximum friction):

F cos θ +mg sinα− µN = 0

Substituting our expression for N we can write F in terms of all our variables:

F =
mg(µ cosα− sinα)

cos θ + µ sin θ

We can determine when F is at a minimum when the denominator is at a maximum. Taking the
derivative of cos θ + µ sin θ and setting it to zero gives the minimum F when tan θ = µ.

5
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µ

√
µ2 + 1

1

θ

θ

Using the large triangle, we can see that in this particular set-up, we have tan θ = µ. Using the two
smaller triangles, we can express the hypotenuse as cos θ+µ sin θ, the hypotenuse of the expression above
which happens to be

√
µ2 + 1 as well. Therefore, for the minimum force we can re-write it as:

Fmin =
mg(µ cosα− sinα)√

µ2 + 1

which is equivalent (though not obviously) the same as the given answer. If we replace α = 0 we get:

Fmin = mg · µ√
µ2 + 1

In the solution given above, we tried to find the maximum value of cos θ+µ sin θ by taking the derivative,
then substituting it back in with a clever triangle. However, we can trivialize this step if we know that
given:

f(x) = A cosx+B sinx

the maximum value for f(x) is: √
A2 +B2

which will give the intended result of √
1 + µ2

Solution 2: There are four forces: The gravitational force, the normal force, the applied force, and the
friction force. We can break this up into two forces. Let

~F1 = ~N + ~f

and let
~F2 = ~F +m~g

The angle F1 makes with the perpendicular is θ = tan−1(µ)

6
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α

N

µN

F

mg

Secondly, F2 must also fall upon the same line as F1. In order for F to be drawn such that it meets this
requirement and F is at a minimum, we want F to be perpendicular to the ray F1 makes. Doing some
angle tracing gives us φ = θ − α as the angle between mg and the ray formed by F1.

Separating ~F2 into its components gives:

F = mg sinφ = mg sin
(
tan−1(µ)− α

)
This is equivalent to the answer given above.

pr 5. In the frame of the plane, the free body diagram of the block is

Ff

ma

mg

N

α

Analyzing the forces involved, we see that for the block to remain still, we must have

Ff = mg sinα−ma cosα

N = mg cosα+ma sinα

Because the normal force must be greater than zero, we have that

N > 0 =⇒ g cosα+ a sinα > 0

g + a tanα > 0

We also have that, since the frictional force must be less than or equal to µN that

f ≤ µN =⇒ g sinα− a cosα

g cosα+ a sinα
≤ µ

7
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If friction acts in the opposite direction, we then have

−g sinα− a cosα

g cosα+ a sinα
≤ µ

Therefore:
|g sinα− a cosα|
g cosα+ a sinα

≤ µ

but only if g + a tanα > 0.

Solution 2: Here are two extreme scenarios that can happen. First, the plane can have a large acceler-
ation and the block is just about to slip upwards. Second, the plane can have an acceleration just low
enough such that it prevents the block from slipping downwards. Let us first focus on the first scenario.

µN

N

mg

ma

α

θ

β

Similar to problem 4, let us consider the four forces geometrically as a whole instead of via components.
Moving into an accelerated reference frame, we introduce our fictitious force f = ma. The mg and ma
vectors combine to give a single “effective” force. The normal and maximum static friction force combine
to give us our second “effective” force. Now the problem becomes a static equilibrium problem when
there are only two forces. This is a trivial case - they have to point in opposite directions. Geometrically,
this occurs when:

β = θ + α

The angle θ is given by:

tan θ =
Nµ

N
= µ

and the angle β relates ma and mg through:

tanβ =
ma

mg
=⇒ tan(tan−1 µ+ α) =

a

g

Solving for µ gives:

µmax = tan

(
tan−1

(
a

g

)
− α

)
Now let’s consider the case where friction is at a minimum and it is at a verge of slipping downwards.

8



Kalda Mechanics 9

µN

N

mg

ma

α

β

θ

Again, we pair the forces up as before. This time, the condition for equilibrium is:

β = α− θ

The value for θ remains constant so we can solve for µ to be:

µmin = tan

(
α− tan−1

(
a

g

))
Therefore, we have:

tan

(
α− tan−1

(
a

g

))
< µ < tan

(
tan−1

(
a

g

)
− α

)
While the answers for these two solutions are very different, they are actually equivalent!

pr 6. a) We examine the forces involved in a cross-section of the cylinder. Assuming the block behaves
like a point mass, and noting there is a centrifugal force, we create following diagram

θ

θ

N

µN

mg

mω2r

Because the system is in equilibrium we must set the resultant force to be zero in both directions. We
assume a tilted coordinate of θ to perform our calculations on. In the vertical direction we have

0 = N +mg sin θ −mω2r

9
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this in turn implies that the normal force is

N = mω2r −mg sin θ.

Looking in the horizontal direction we note that

µN −mg cos θ = 0

mg cos θ = µN

However, we remember that µN is the maximum amount of friction obtained from slipping, thus we have
to put a less than or equal sign to obtain

mg cos θ ≤ µN

substituting in N from our previous calculation we have

mg cos θ ≤ µ(mω2r −mg sin θ)

moving variables to the other side and canceling out m gives

ω2r ≥ g(µ−1 cos θ + sin θ)

Our goal is to now to find a maximal value of µ−1 cos θ+ sin θ on the interval [0, 2π]. It is known that a
sinusoid A cos θ +B sin θ, can be represented as a single trigonometric function:

A cos θ +B sin θ =
√
A2 +B2 · cos (θ + φ)

From these expressions of 1 sinusoid, it is clear the maximum value is
√
A2 +B2, giving the maximum

of µ−1 cos θ + sin θ as
√

1 + µ−2. Thus replacing this value in for our final expression gives us

ω2r ≥ g(
√
µ−2 + 1)

b) In this part we work with cylindrical coordinates. We decompose gravity upon two axes. If we rotate
the cylinder by α we have

gz = g sinα

gr,θ = g cosα

All we do now is plug in geff for our two equations. For our radial equation we had

N = mω2r −mg sin θ

Since the normal force is radial we use gr,θ = g cosα we plug in for gravity to get

N = mω2r −mg cosα sin θ

In our second equation who have two components of gravity, Fθ and Fz, who’s combined modulus must
be less than friction or µN . √

F 2
θ + F 2

r ≤ µN√
(mg cosα cos θ)2 + (mg sinα)2 ≤ µ(mω2r −mg cosα sin θ)

Taking out m and factoring we have

ω2r ≥ g cosα(
√

cos2 θ + tan2 α+ µ sin θ)

Again we must maximize our right hand equation. Inevitably, there is no neat trick to maximize this
apart from differentiating and setting the result to zero.

10
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pr 7. The center of mass of the object can be calculated by treating the wheel as a superposition of
two objects, one with positive density ρ and one with negative mass density −ρ. Taking r = 0 to be the
center, the center of mass is:

rcm =
ρπR2(0)− ρπ

(
R
2

)2 (R
3

)
ρπR2 − ρπ

(
R
2

)2
= −

1
4

(
R
3

)
1− 1/4

= −R/9

Therefore, when the normal force is zero, we have:

mω2(R/9) = mg

ω = 3
√
g/R

And therefore the speed would be

v = 3
√
gR

pr 8. a) Let the point where the rope meets the cylinder be A, and the two points where friction band
meets the cylinder be B and C. Let D be the point diagonally opposite A.

Claim. D is the instantaneous centre of rotation (ICOR).

A

D

B C

Proof. Let us assume a contradictory case. Let D∗ be the ICOR. Since the velocity of point A is
perpendicular to AD, D∗ must lie somewhere on AD. The velocities of B and C are perpendicular to
DB and DC (due to definition of ICOR), and the friction forces are anti-parallel to these. The only
forces acting on the cylinder is the tension T due to the rope, and the two friction forces. As the cylinder
is in equilibrium, by setting torque to be 0 about the point where the two friction vectors intersect, we see
that the tension vector must also pass through it. However, due to symmetry, the point of intersection
must lie on AD and thus it must be A itself. Thus, ∠ABD∗ = ∠ACD∗ = 90◦. Therefore this means
that ABCD∗ is cyclic, which implies D∗ ≡ D.

Now let the angular velocity about D be ω. The velocity of A is

v = ω × 2R

and the velocity at the centre is:

vcenter = ω ×R =
v

2

11
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b) Dividing the floor into various infinitesimally thin strips like in a), we can conclude that the ICOR is
still D and the answer remains the same.

pr 9. We shall use a property in geometry. Thales’s theorem states that if A, B, and C are distinct
points on a circle where the line AC is a diameter, then the angle ∠ABC is a right angle.

A

C

B

D

O
E

Therefore if we draw a circle where the corners of the two pillars form the ends of the diameter AC, the
outline of the circle gives the possible locations the mass can be located as. Let the location of the mass
be B. We wish to minimize the height of B which so happens to be at the very bottom of the circle. Let
∠EBD = α such that ∠ABE = 45◦. Doing some angle tracing, we can verify that

∠BAD = 45◦ − α

Now since OA and OB are both the radius, that means OAB is an isosceles triangle where:

∠OAB = ∠ABO =⇒ 45◦ − α+ ∠OAD = 45◦ + α =⇒ ∠OAD = 2α

This angle relates the horizontal distance of the two pillars and the vertical distance of the two pillars
through:

tanOAD = tan(2α) =
h

a

Solution 2: Let y be the vertical distance between the mass and the top of the left pillar. Then let b
and c be the horizontal distances between the mass and the left and right pillars, respectively, such that
a = b+ c. Doing basic angle tracing, we can see that:

b =
y

tan(45− α)

and

c = (h+ y) tan(45− α)

12
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Adding them together and letting β ≡ 45− α yields:

a = b+ c

a =
y

tan(β)
+ (h+ y) tan(β)

a tan(β) = y + (h+ y) tan2(β)

a tan(β)− h tan2(β) = y + y tan2(β)

tan(β)(a− h tan(β))

1 + tan2(β)
= y

Doing a quick sanity check, this yields the correct answer of y = a/2 when β = 45◦ and h = 0
We can simplify this further with a few trig identities. You can verify that the above expression is
equivalent to

y =
1

2
a sin(90− 2α)− h

2
tan(45− α)

From the energy approach, the system will be in static equilibrium if no work is needed to rotate the
system by a differential amount (change in potential energy is zero). This occurs when the gravitational
potential energy is at a minimum or y is minimized. Taking the derivative with respect to α we get:

dy

dα
=

1

2
a cos(90− 2α)(−2)− (2h sin(45− α))(cos(45− α)(−1)

0 = −a cos(90− 2α) + h sin(90− 2α)
a

h
= tan(90− 2α)

But since tan(90− 2α) = cot(2α), we can rewrite this to get:

tan(2α) =
h

a

pr 10.

`

µN

N

h

√
`2 − h2A

B

C

Consider what happens when the applied force approaches infinity. To maintain equilibrium, the friction
force between the rod and the board must also increase. This friction force will also approach infinity.
When dealing with large forces, we can ignore constant forces such as the weight of both the board and

13
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the rod.

As a result, since the weight of the rod is negligible we can pretend it’s a mass-less rod. We also know
that the forces at the ends of a massless rod will always point along the rod. For example, the force
exerted on the rod by the board must point along the rod as well. The angle of this force is solely
dependent on the friction coefficient µ1. Therefore:

tanα <
µ1N

N
=⇒ µ1 >

√
`2 − h2

h

Solution 2: We want that when the board is on the verge of slipping then the rod should exert a larger
force on the board (the rod should be pulled towards the board and not away from it). Consider the
torque on the rod about the hinge point. We want that it should be clockwise when the block is on the
verge of slipping.

Let the sum of normal reaction and friction force on the rod be f (the normal points upwards and the
friction points to the right). When the block is on the verge of slipping, the resultant makes an angle
tan−1 µ from the normal. We have:

τ = mg sinα
l

2
+ f sin(tan−1 µ− α)

considering clockwise torque to be positive. As the applied force on the block increases, f also increases
without bounds and because we want the torque to be clockwise no matter how much force we apply,
the mg term can be neglected. So

f sin(tan−1 µ− α) ≥ 0

Since both tan−1 µ and α are less than 90◦, we can conclude that

tan−1 µ ≥ α =⇒ µ ≥
√
l2 − h2

h

pr 11. We will use a virtual work approach.a In a static situation, the net force will be zero and as a
result the potential energy will be at a minimum. Any slight displacement will create no change to the
potential energy in first order.

Consider what happens when the mass is lowered by a distance dh. The potential energy would drop
by −mgdh. The distance between hinges would each increase by dh/3 to compensate for the length
increase. This means the string gets stretched by dh/3. The energy stored thus is:

Tdh/3

Setting these changes to zero gives:

−mgdh+ Tdh/3 = 0 =⇒ T = 3mg

aIf you are unfamiliar with virtual work, refer to the explanation in Kalda’s handout, or to this pdf.

14
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pr 12. First, we’ll look at the behavior of the tension at the bottom. The vertical component of the
tension has to support the weight of the block so we have:

2Tbottom,y = 2Tbottom cos(β/2) = Mg

The horizontal component is thus:

Tx = Tbottom sin(β/2) =
Mg

2
tan(β/2)

Notice that this horizontal tension force will be constant in a massive rope. If we look at a differential
area of the string, the only other force other than tension is the gravitational force downwards. To
balance horizontal forces, the horizontal components of tension have to be constant. At the top of the
rope, the vertical component of the tension has to support the weight of the block and the string. We
have:

2Ttop,y = 2Ttop sinα = (M +m)g

The horizontal component will thus be:

Tx = Ttop cosα =
(M +m)g

2
cotα

Setting these two expressions for the horizontal tension equal gives:

M tan(β/2) = (M +m) cotα =⇒ β = 2 tan−1
((

1 +
m

M

)
cotα

)

pr 13. Since H � L, the curvature of the rope is very small which means that we can approximate
the section that is above the ground as a straight line. Furthermore, the angle between the tangent to
the rope and horizon remains everywhere small. Now, consider the following diagram assuming that the
mass density of the rope is λ:

mg

H

`

F

N

λ(L− `)g

f

The mass of the rope that is on the ground is given by λ(L − `) where ` represents the horizontal part
of the rope that is above the ground (as shown in the picture). Since the angle is small, we can assume
that ` approximately represents the total length of the part of the rope that is above the ground. Since
the weight of this section of the rope balances the normal force N , this then means that the frictional
force f = µN = µλ(L− `)g. By using a torque balance, we can then write that

λ`g
`

2
= fH = µλ(L− `)gH.

15



Kalda Mechanics 16

Cancelling factors then yields a quadratic which has a solution of

`2

2
= µ(L− `)H =⇒ ` =

√
2HLµ+ µ2H2 − µH ≈

√
2HLµ− µH ≈ 7.2 m.

pr 14. a) Let us draw the free body diagram:

r

θ

mω2R

mg

`

We note by analysis of torques that in order for there to be a restoring torque, we must have:

mgr > mω2r` cos θ

We use the small angle approximation cos θ = 1 to then yield

g > ω2`

Thus

ω2 <
g

`

b) Let the angles produced by the rods be ϕ1 and ϕ2 respectively. We then have the potential energy
to be

V = −mgl cosϕ1 −mgl(cosϕ1 + cosϕ2)

Using the small angle approximation cosϕ = 1− ϕ2

2 gives us

V = −mgl
(

1− ϕ2
1

2

)
−mgl

(
1− ϕ2

1

2
+ 1− ϕ2

2

2

)
.

According to idea 19, we can remove all constants or non-quadratic terms

Vg = mgl

(
ϕ2

1 +
ϕ2

2

2

)
Finding the potential energy produced by the centrigal force will have a similar approach.

V =
1

2
m(l sinϕ1ω

2)2 +
1

2
m(l(sinϕ1 + sinϕ2)ω)2

Using the small angle approximation sin θ = θ we have

V =
1

2
m(lϕ1ω

2)2 +
1

2
m(l(ϕ1 + ϕ2)ω)2

16



Kalda Mechanics 17

Vc =
1

2
mω2l2(2ϕ2

1 + 2ϕ1ϕ2 + ϕ2
2)

The total potential energy is then

V = Vg + Vc = mgl

(
ϕ2

1 +
ϕ2

2

2

)
+

1

2
mω2l2(2ϕ2

1 + 2ϕ1ϕ2 + ϕ2
2)

Rearranging this, gives us the quadratic

V = (mgl −mω2l2)ϕ2
1 + (mω2l2)ϕ1ϕ2 +

1

2
(mgl −mω2l2)ϕ2

2

The equilibrium ϕ1 = ϕ2 = 0 is stable if it corresponds to the potential energy minimum, i.e, if the
polynomial yields positive values for any departure from the equilibrium point; this condition leads to
two inequalities. First, upon considering ϕ2 = 0 (with ϕ2 6= 0) we conclude that the multiplier of ϕ2

1 (or
mgl − mω2l2) has to be positive. Second, for any ϕ2 6= 0, the polynomial should be strictly positive,
i.e. if we equate this expression to zero and consider it as a quadratic equation for ϕ1, there should be
no real-valued roots, which means that the discriminant should be negative. Thus, by looking at our
discriminant we find that

(mω2l2)2 − 4(mgl −mω2l2) · 1

2
(mgl −mω2l2) < 0

mω2l2 <
√

2(mgl −mω2l2)(
1√
2

+ 1

)
mω2l2 < mgl

ω2 <
(2−

√
2)g

l

pr 15. Conceptually, what would happen is that if the block is extremely light and the square cross
section is given a tiny push, there will have a restoring torque causing it to be in stable equilibrium.
However, at a certain density, the equilibrium position will not be when the sides of the square are
parallel to the water. In fact, the new equilibrium position will be rotated a tiny angle θ where θ � 1.

17
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y

`

θ

O

We can represent the submerged portion as three separate masses. The long horizontal line that extends
past the square is the water level. Therefore, we can recognize that the submerged part represents a
trapezoid. This can be perfectly represented as a rectangle that has the same area as the trapezoid.
However, if we try to balance torques with this setup, we will fail because there are certain edge effects
that are not covered. Therefore, we need to add a triangle of density ρ an identical triangle with density
−ρo to make it resemble its original shape.

Let the width of the square be ` and the height of the rectangle be y. Balancing forces we have:

ρo`
2g = ρw`yg =⇒ y

`
=
ρo
ρw

Let us now balance torques around the center of mass at O. In an equilibrium position, the torques will
sum to zero. The torque from the buoyant force from the rectangle is:

τ1 = ρwg (`y)

(
1

2
(`− y)

)
sin θ

where θ is the angle the bottom of the beam makes with the horizontal. The triangular parts will also
provide a torque from the buoyant force. Note that the buoyant force caused by the negative mass
triangle will be negative and point in the other direction. The torque of each is:

τ2 = ρwg

(
1

2
(`/2)2 sin θ

)(
2

3
(`/2)

)
where 2

3(`/2) is the perpendicular distance from the center of mass of the triangle to the center of mass

18
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of the square. Notice that since θ � 1 we can sum torques and set it to zero:

0 = τ1 − 2τ2

`3

12
=
`y(`− y)

2
`2

6
= y(`− y)

From earlier, let’s substitute y
` = ρo

ρw
≡ f and we’ll get:

`2

6
= `2f(1− f) =⇒ f2 − f + 1/6 = 0

Using the quadratic formula we get:

f =
ρo
ρw

=
1

2

(
1− 3−1/2

)

pr 16. Initially the force on the container is given by the total force of gravity that is acting on the
hemispherical container, or in other words

Fbef = Mg + ρgV = Mg +
2

3
πρgR2

When the water leaks out, the containers weight no longer acts on the surface. This means the new
pressure is equal to pressure of the water times the area of the base of the hemispherical container. The
water pressure is the same on all places of the container so P = ρgR ·πR2.From force balancing, we have

(ρgR)πR2 = Mg +
2

3
πρgR3 =⇒ M =

1

3
πρR3

Solution 2: Let us slice up the dome into very thing rings of thickness dl. We can assume that pressure
is also constant on these rings. Let a ring be located a height h above the dome. We then see that the
pressure is

P (h) = ρg(R− h)

Let the radius of the ring be r and let the endpoint of the ring make an angle α with the center of the
dome. That then means that r = R cosα and has a thickness dl = Rdα. That layer is then then has an
area

dS = 2πR2 cosαdα

Due to the curvature of the hemisphere, all the buoyant forces directed on the hemisphere will cancel
out except for the buoyant force directed at the top. We then see that

dF = P (h)dS sinα =⇒ dF = ρg(R−R sinα) · 2πR2 cosα sinαdα

We now see that the net force of the water on the container is

dF =

∫
dF = 2πρgR3

∫ π/2

0
(1− sinα) cosαdα

Taking this integral then gives us

F = 2πρgR3

(
sin2 α

2
− sin3 α

3

)
=⇒ F =

1

3
πρgR3

19
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For the forces to balance out, this force must equal to the weight of the container which means that

Mg =
1

3
πρgR3

Solution 3: Assume that the bell is placed in a cylindrical container which has a radius and height
of both R. The container’s mass will become negligible when we fill the cylinder with water. Because
the inside and outside pressures on the hemisphere are equal at all points (because of Pascal’s law), the
water’s equilibrium won’t be affected if the hemisphere is removed and the pressure of the water on the
table will not change either. This means that the pressure of the water we poured into the cylindrical
container acts exactly like the hemisphere so the hemisphere’s mass is equal to the mass of the poured
water. This means the mass is then,

M = ρ

(
πR3 − 2

3
πR3

)
=

1

3
πρR3

20
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pr 17. The main idea is that the block slowly moves down the slope. This is because since the block
moves back and forth in a very short period, it is never able to gain significant horizontal velocity. With
this information let us create a freebody diagram of the block where we treat the block as a point mass

fy

fx

w

v

The object will have a friction force directed up the plane:

fy = mg sinα

such that it maintains a constant velocity down the plane. The horizontal friction force is fx though we
won’t notice any horizontal motion. The key thing to realize is that the direction of the friction force is
anti-parallel to the direction of velocity. Therefore we have:

fy
fx

=
w

v

where fx is given by:

f2
y + f2

x = (µN)2 = (µmg cosα)2 =⇒ fx = mg

√
µ2 cos2 α− sin2 α

and the entire block will be undergoing kinetic friction the entire time. Therefore:

w = v · sinα√
µ2 cos2 α− sin2 α

=
v√

µ2 cot2 α− 1

pr 18. The problem, in essence, is asking for how much the water level of the ocean changes ∆h due
to the iron deposit. Let us choose the origin of the vertical x-axis to be a point on the surface of the
ocean very far from the iron deposit. At x = 0, we take as the reference point to all other things in the
system, and to the iron deposit, we take our reference point from far away such that the gravitational
potential is zero. Let us consider when the iron deposit is initially not present. The potential due to this
can be given as

ϕ1 = −
Gρ4

3πr
3

r + h
.

Now, consider when the iron deposit is put in the system. The water level increases by a height ∆h� h
such that

ϕ2 = g∆h−
G(ρ+ ∆ρ)4

3πr
3

h+ r
.
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Equating both potentials (as it remains constant over time) gives us the expression

gh−
Gρ4

3πr
3

r + h
= g(h+ ∆h)−

G(ρ+ ∆ρ)4
3πr

3

h+ r
=⇒ ∆h =

4
3πGr

3∆ρ

g(r + h)
.

22



Kalda Mechanics 23

pr 19. In a rotating reference frame, we have that

~ω3 = ~ω1 + ~ω2

where ~ω1 is the angular velocity in the reference frame, ~ω2 is the angular velocity of the body in the
rotating reference, and ~ω3 is that in the stationary frame. If you consider the reference point to be at
infinity, then you find that the rotational motion of the disk becomes negligible. Therefore, we have
that

0 = ~ω1 + ~ω2

~ω1 = −~ω

This problem was found in the book ’Aptitude Test Problems in Physics’ by S.S. Krotov.

pr 20. When the waxing machine is stationary, no force is needed in order to maintain equilibrium
because all the force vectors cancel out. However, when we are moving the disk at a constant velocity
v, we are adding an extra component to the rotation. Let us set the rotation in the clockwise direction
and velocity v to the right.

Then, if we move into a frame moving v to the right, there is an instantaneous axis of rotation on the
disk at a position A located r = v/ω below the center. We can trace out a center with radius R − r
centered around this point where the net force of this circle sums to zero. We now concern ourselves
with the crescent-like shaped border.

r θ

O

A

B

C

The distance from A to the rim of the disk at an angle of θ can be calculated by using the law of cosines

AB2 = R′2 = r2 +R2 − 2Rr cos θ ≈ R2 − 2Rr cos θ

assuming that r � R. Now, let us try to find the area of the orange area shown

23
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dθ
r

θ

O

A

We can find that the area dS can be represented by differentials with the differences of the respective
sector areas:

dS =
1

2
(R′2 − (R− r)2)dθ =

1

2
(R2 − 2Rr cos θ −R2 + r2 + 2Rr)dθ ≈ Rr(1− cos θ)dθ.

The force of this surface can now be written as

|d~F | = A · dS =
µmg

πR2
dS

where A is the ratio of the total frictional force over the total area of the setup (in other words, the
”density” of force). We can then write the force in the horizontal x-direction to be

dFx =
µmg

πR2
cos θdS =

µmg

πR2
cos θRr(1− cos θ)dθ.

We then can find the force as the integral from upper and lower bounds of 2π and 0 respectively to get

Fx =
µmgr

πR

∣∣∣∣∫ 2π

0
cos θ(1− cos θ)dθ

∣∣∣∣ =
µmgr

πR
· 2
(∫ π

0
cos θ(1− cos θ)dθ

)
.

Upon substituting v = ω/r, we find that

Fx =
µmgv

πωR
· 2π

2
=
µmgv

ωR
.
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pr 21. We assume the condition µ > tanα is met so for any angle φ, the pencil will not slide down.
However, it is able to roll. For an object to just start rolling, the force of gravity needs to form a vertical
line. Let us first look at the simple case where φ = 0

mg sinα

mg cosα

α

60◦

We break up the gravitational force into two components. One component is perpendicular to the plane
mg cosα, and the other is along the plane and perpendicular to the pencil mg sinα. For rolling to begin,
the sum of these two components need to lie on top of an edge, which is satisfied when:

tan 30◦ =
mg⊥

mgnormal
=
mg sinα

mg cosα

When φ 6= 0, we perform a similar task however the pencil will no longer be rolling directly down the
ramp but rather at an angle.

φ

mg sinα

mg sinα sinφ

mg sinα cosφ φ

α

We break up the gravitational force into three components. One component is perpendicular to the plane
mg cosα, the second is along the plane and perpendicular to the pencil mg sinα cosφ, and the third is
along the plane and parallel to the pencil mg sinα sinφ. We note that the parallel component does not
contribute to whether or not the pencil will roll down. Again, the sum of the first two components need
to lie on top of an edge, which is satisfied when:

tan 30◦ =
mg⊥

mgnormal
=
mg sinα cosφ

mg cosα
=⇒ tanα cosφ < tan 30◦
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This problem was found in the book ‘Aptitude Test Problems in Physics’ by S.S. Krotov.

pr 22. Consider a vertical plane parallel to the free hanging portion of the string.

πR
2

L

α

α
`

P

Q

Move this plane until it contacts the point in which the cylinder and the string first meet. Call this
point Q, which is where we unfold half of the cylinder into a rectangle where the width is πR. The angle
between PQ and the width of the rectangle is α so we have:

PQ =
πR

2 cosα

and thus:

` = L− πR

2 cosα

When the weight oscillates, the trace of the string still stays straight on the unfolded cylinder. Therefore
the length of the hanging string (and thus the weight’s potential energy) do not depend in any oscillatory
state on whether the surface of the cylinder is truly cylindrical or is unfolded into a planar vertical surface.
Therefore the period of oscillations is still

T = 2π
√
L/g

pr 23. Label the strings from left to right as 1, 2, 3, 4. If string 4 is cut then in equilibrium state:

T1 + T2 + T3 = mg

Let the rod be inclined at an angle θ with the horizontal in equilibrium position. As extensions in the
strings will be small θ will be very small. Balancing torques about 1, we get:

T2

(
`

3

)
+ T3

(
2`

3
cos θ

)
= mg

`

2
cos θ =⇒ T2 + 2T3 =

3mg

2
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As the rod is rigid, we can write our third equation as a conservation law:

∆x2 −∆x1

`/3
=

∆x3 −∆x1

2`/3
=⇒ T2 − T1

k`/3
=
T3 − T2

k`/3

As strings are identical:
2T2 = T3 + T1

We have three equations and three unknowns so solving them yields:

T1 =
1

12
mg

T2 =
1

3
mg

T3 =
7

12
mg
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2 Solutions to Dynamics Problems

This chapter will focus on problems 24-55 of the handout. Dynamics, unlike statics, analyzes the motion of
objects in motion. Lots of dynamics problems require analyzing the accelerations of the system or finding the
forces acting in a system. In this section, Prof Kalda introduces a technique called Lagrangian formalism that is
used to find the acceleration of a object in a system using the generalized coordinate ξ. We are also introduced
to the majority of mechanics problems in this section of the handout.

pr 24. Let the acceleration of small block on top be a1, the small block on the side be a2, and the big
block be a3. We create three F = ma equations

mg − T = ma2 (1)

T = ma1 (2)

−T = Ma3 (3)

If the block on the side moves a small distance d1, then the block on top will move a small distance d2

to the right which makes the whole big block move a distance d3 to the left. Therefore as a result,

d2 = d1 + d3

and the acceleration
a2 = a1 + a3

From equation (1) we have

mg − T = m(a1 + a3)

mg − T = T +ma3

mg −ma3 = 2Ma3

mg = (2M +m)a3

a3 =
mg

2M +m

pr 25.

2α

We tilt the plane by an angle 2α. This makes the effective gravity in this scenario become

geff = mg sinα cosα
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Since the wedge is weightless, the normal force between the wedge of both blocks have to be equal
otherwise, the wedge will experience an infinite acceleration. Setting these two forces equal to each other
in the horizontal direction gives us

Fg sinα cos(2α) = Fg sinα

cos 2α =
m

M

The lower ball will then ’climb up’ if
m < M cos 2α

Solution 2: Since the wedge is weightless, the normal force between the wedge of both blocks have to
be equal otherwise, the wedge will experience an infinite acceleration. Therefore, setting the forces of
inertia and weight at the point when both balls make contact, produces the equation

mg cosα+ma sinα = Mg cosα+Ma sinα

We also note, that by trigonometry, after contact the smaller mass must have the ratio of the translational
fictitious force to the weight of the ball must be greater than tanα for the ball to slide up the ramp

ma

mg
> tanα =⇒ a > g tanα.

We now go to the first equation and solve for acceleration. Moving variables to the same side results in

a sinα(m+M) = g cosα(M −m) =⇒ a =
g cosα(M −m)

sinα(m+M)

Substituting our minimum value of acceleration yields

g cosα(M −m)

sinα(m+M)
> g tanα

Solving this inequality yields
m < M cos 2α

This problem was found in the book ’Aptitude Test Problems in Physics’ by S.S. Krotov.

pr 26. Let’s take the displacement ξ of the wedge as coordinate describing the system’s position.a If
the wedge moves by ξ, then the block moves the same amount with respect to the wedge because the
rope is unstretchable. The kinetic energy changes by

Π = mgξ sinα.

To find the velocity of the wedge and that of the block, let us add the two vectors ξ̇ separated by an
angle α. The vertical components of the vector (ξ̇ sin α

2 ) cancel out due to symmetry. The horizontal

components add up together to get 2ξ̇ sin α
2 . Thus, the velocity of the wedge is ξ̇ and that of the block

is 2ξ̇ sin α
2 , therefore the net kinetic energy is

K =
1

2
ξ̇2
(
M + 4M sin2 α

2

)
.
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Then we find Π′(ξ) = mg sinα and M = M + 4m sin2 α
2 ; their ratio gives the answer of

a =
mg sinα

M + 4m sin2 α
2

This problem was found in the book ’Aptitude Test Problems in Physics by S.S. Krotov.
aThis is a solution that is based off the one given in hints, and is mainly expanding on some of the points that the hint

did not give.

pr 27. Let us call ξ a generalised coordinate if the entire state of a system can be described by this

single number. Say we need to find the acceleration ξ̈ of coordinate ξ. If we can express the potential
energy Π of the system as a function Π (ξ) of ξ and the kinetic energy in the form K = Mξ̇2/2 where
coefficient M is a combination of masses of the bodies (and perhaps of moments of inertia), then

ξ̈ = −Π′ (ξ) /M.

Let us take the wedge’s displacement as the coordinate ξ; if the displacement of the block along the
surface of the wedge is η, then the center of mass from rest is

η(m1 cosα1 +m2 cosα2) = (M +m1 +m2)ξ.

We then find that

η =
(M +m1 +m2)ξ

(m1 cosα1 +m2 cosα2)

We note that if we substitute this expression everywhere, we will get an extremely contrived answer.
Thus, let us substitute this expressions with more sightful variable. Let

% ≡ M +m1 +m2

m1 cosα1 +m2 cosα2
.

The potential energy as a function of ξ is given by

Π (ξ) = m1gη sinα1 −m2gη sinα2

It is given that ξ̈ = Π′(ξ)
M . Thus by differentiating Π (ξ) we get

Π (ξ) = %(m1 sinα1 −m2 sinα2).

Finding M will be a bit harder. The kinetic energy of the block is given as the sum of the horizontal
and vertical energies or

K =
1

2
Mξ̇2 +

1

2
m1(ξ̇ − η̇ cosα1)2 +

1

2
m1(η̇ sinα1)2 +

1

2
m2(ξ̇ − η̇ cosα2)2 +

1

2
m2(η̇ sinα2)2

=
1

2
Mξ̇2 +

1

2
m2(ξ̇2 − 2η̇ξ̇ cosα2 + η̇2) +

1

2
m1(ẋi

2 − 2η̇ξ̇ cosα1 + η̇2)

We have that η = %ξ =⇒ η̇ = %ξ̇. Thus, by substituting this into our expression for kinetic energy we
have

K =
1

2
Mξ̇2 +

1

2
m2(ξ̇2 − 2η̇ξ̇ cosα2 + %η̇2) +

1

2
m1(ẋi

2 − 2η̇ξ̇ cosα1 + η̇2)

=
1

2
Mξ̇2 +

1

2
m2(ξ̇2 − 2%ξ̇2 cosα2 + %ξ̇2) +

1

2
m1(ξ̇2 − 2%ξ̇2 cosα1 + %ξ̇2)

M = M +m2(1− 2% cosα2 + %2) +m1(1− 2% cosα1 + %2)
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Now we apply our Lagrangian Formalism Identity,

ξ̈ =
Π′ (ξ)

M
=

%(m1 sinα1 −m2 sinα2)

M +m2(1− 2% cosα2 + %2) +m1(1− 2% cosα1 + %2)

=
%(m1 sinα1 −m2 sinα2)

(M +m1 +m2)− 2%(m1 cosα1 +m2 cosα2) + %2(m1 +m2)

=
%(m1 sinα1 −m2 sinα2)

(M +m1 +m2)− 2
M +m1 +m2

m1 cosα1 +m2 cosα2
(m1 cosα1 +m2 cosα2) + %2(m1 +m2)

=
%(m1 sinα1 −m2 sinα2)

%2(m1 +m2)− (M +m1 +m2)
=

M +m1 +m2

m1 cosα1 +m2 cosα2
(m1 sinα1 −m2 sinα2)(

M +m1 +m2

m1 cosα1 +m2 cosα2

)2

(m1 +m2)− (M +m1 +m2)

=

(
M +m1 +m2

m1 cosα1 +m2 cosα2
(m1 sinα1 −m2 sinα2)

)
(

(M +m1 +m2)2(m1 +m2)− (M +m1 +m2)(m1 cosα1 +m2 cosα2)

(m1 cosα1 +m2 cosα2)2

)
a0 =

(m1 cosα1 +m2 cosα2)(m1 sinα1 −m2 sinα2)

(m1 +m2 +M)(m1 +m2)− (m1 cosα1 +m2 cosα2)2

This is extremely long, yes, but to do well at the International Olympiad, you must be familiar and not
scared to bash it all out.

This problem is from the 1971 IPhO Problem 1. Refer to https://www.jyu.fi/tdk/kastdk/olympiads/problems.

html#71prob for a solution without lagrangian formalism.

pr 28.

√
2v/2

√
2v/2

v

Let us denote the horizontal velocity of the block as v. When the distance between the block and the
step is

√
2r, the cylinder pushes on the block at an angle of 45◦. By trigonometry, we see that the

cylinder would have to push on the block with a velocity of
√

2v/2 for the block to move horizontally
with a velocity v. Now it is easy to see that velocity of cylinder is just

~vc = −vb
2
î− vb

2
ĵ

where vb is the speed of the block (directed towards the negative x-axis). By energy conservation

mg

(
r − r√

2

)
=

1

2
mvb

2 +
1

2
mvc

2

31

https://www.jyu.fi/tdk/kastdk/olympiads/problems.html#71prob
https://www.jyu.fi/tdk/kastdk/olympiads/problems.html#71prob


Kalda Mechanics 32

Also project Newton’s 2nd law onto the axis that passes through the top corner of the step and the
cylinder’s centre: this axis is perpendicular both to the normal force between the block and the cylinder
and to the cylinder’s tangential acceleration.

mg√
2

= N +
mvc

2

r
=⇒ mg

√
2

2
−N = m

(
√

2v/2)2

r

where N is the normal force by the wall. Now, we solve these systems of equations for N . In our first
equation, we have

mgr

(
2−
√

2

2

)
=

1

2
mv2 +

1

2
m

(√
2v

2

)2

=
3

2
m

(√
2v

2

)2

Taking out common factors from both sides gives us

gr(
√

2− 2) = 3

(√
2v

2

)2

=⇒ g(2−
√

2)

3
=

(
√

2v/2)2

r
.

Substituting this result into our conservation of energy equation gives us

mg

√
2

2
−N = m

g(2−
√

2)

3

Solving for N gives us the result

N =

(√
2

2
− 2−

√
2

3

)
mg =

(
5
√

2− 4

6

)
mg .

Let the normal force from the other block be Q. From here we can project Newton’s Second Law onto
the cylinder and block on the horizontal direction (and noting that the aceleration of the cylinder is half
that of the block because it’s horizontal velocity is half that of the blocks velocity) gives us

m(a/2) = N sin θ −Q sin θ

ma = Q sin θ

where θ is the angle the normal force makes with respect to the vertical. Substituting the second equation
into the first gives us

1

2
Q sin θ = N sin θ −Q sin θ =⇒ 3

2
Q = N

Therefore the ratio between the two normal forces are Q
N = 2

3 . As mentioned in the hint, the ratios of
the normals is fixed, hence they blow up at the same instant. (only differing by a constant factor) which
means that they would give 0 at the same values.

This problem was found in the book ’Aptitude Test Problems in Physics by S.S. Krotov.

pr 29. Consider the time when the angle between the line joining the edge to the rod makes an angle

θ, with the vertical. We want that the normal should always be positive (outwards). The velocity of the
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rod at this time, ν, can be calculated using energy conservation 1
2mν

2 = 1
2mv

2 +mgR(1− cos θ). Setting
total forces along the line joining the rod to the edge to 0, we get that

mν2

R
+N = mg cos θ

N = mg cos θ −
2 · 1

2
mν2

R

= mg cos θ − mv2 + 2mgR(1− cos θ)

R

0 ≤ 3mg cos θ − mv2 + 2mgR

R

cos θ ≥ 1

3

(
2 +

v2

gR

)
for all values of θ that can be achieved. The maximum value of θ will be alpha, so

cosα ≥ 1

3

(
2 +

v2

gR

)
is a necessary and sufficient condition.

pr 30. First, we choose a frame that we will work from in this problem. To cancel out as many
variables as possible, we should work in the frame of the large block when it is set into motion.

From reference of the bottom of the circular cavity, the initial potential energy of the small block at the
top is mgr. When it gets to the bottom of the circular cavity, it gains a kinetic energy of 1

2mv
2. By

conservation of energy we get
1

2
mv2 = mgr =⇒ v =

√
2gr.

When the small block is at the bottom of the cavity, it will move backwards with a velocity v1 in the
reference frame of the big block, while the big block itslef moves with a velocity v2 forwards. Thus,
conservation of momentum and energy gives us

Mv1 −mv2 = m
√

2gr

1

2
Mv2

1 +
1

2
mv2

2 = mgr

From our conservation of momentum equation we have

v2 =
M

m
v1 −

√
2gr

Thus by substituting v2 back into our conservation of momentum equation we result in

1

2
Mv2

1 +
1

2
m

(
M

m
v1 −

√
2gr

)2

= mgr

1

2
Mv2

1 +
1

2
m

(
M2

m2
v2

1 + 2gr − 2M

m
v1

√
2gr

)
= mgr

Expanding 1
2m inside gives

1

2
Mv2

1 +
1

2

M2

m
v2

1 +mgr −Mv1

√
2gr = mgr
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Taking away mgr from both sides and dividing both sides by Mv1 gives us

1

2
v1 +

M

2m
v1 −

√
2gr = 0

Factoring and taking
√

2gr to the other side gives us

v1

(
M +m

2m

)
=
√

2gr

v1 = 2
m

M +m

√
2gr

This problem was found in the book ’Aptitude Test Problems in Physics by S.S. Krotov.

pr 31. Let the centre of mass of the system be C and the point where the right string and the rod
meet be A. Let the required tension be T .
Claim. A must have no acceleration.

Proof: Acceleration of A cannot be downwards as the string is inextensible. If the acceleration of A is
upwards, then the string will slack and T will be 0, so the acceleration of the centre of mass will be
downwards and it there would be no torque and hence no rotation implying that A has acceleration
downwards. This results in a contradiction. So the only case left is that A has zero acceleration.

Due to this, a = α × AC, where a and α are the linear acceleration of C and the angular acceleration
of the rod about A respectively. Also, the distance AC = l + Ml

M+m = (m+2M)l
M+m . The acceleration of the

centre of the mass can be calculated from Newton’s second law,

(M +m)g − T = (M +m)a =⇒ a = g − T

M +m

, where a is positive downwards. The torque on the rod about A is,

τ = (M +m)g ×AC = Iα = (m+ 4M)l2
a

AC
=⇒ a =

(m+ 2M)2

(M +m)(m+ 4M)
g

Substituting this in the previous equation, we get that T =
Mmg

m+ 4M

Solution 2: Let the acceleration of the mass m right after the second string is cut be a, it then follows
the acceleration of the second mass M right after is given by 2a. If the normal force produced from
the first mass is N1 and the normal force produced from the second mass is N2 then our two F = ma
equations are

mg −N1 = ma

Mg −N2 = M(2a)

We also have our equation of torque to be

mg`+Mg(2`) = Iα = (m`2 + 4M`2)α
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Lastly, by Newton’s third law the tension is given by

T = N1 +N2

We now can solve this problem given four equations and four unknowns. We first manipulate the torque
equation.

mg`+ 2Mg`2 = (m`2 + 4M`2)
a

`
mg + 2Mg = (m+ 4M)a

a =
m+ 2M

m+ 4M
g

We now go back to our first two F = ma equations. We substitute our first equation to get

mg −N1 = ma =⇒ N1 = mg −m
(
m+ 2M

m+ 4M
g

)
our second equation gives us

Mg −N2 = M(2a) =⇒ N2 = Mg − 2M

(
m+ 2M

m+ 4M
g

)
.

Our equation for Newton’s third law then gives us

T = mg −m
(
m+ 2M

m+ 4M
g

)
+Mg − 2M

(
m+ 2M

m+ 4M
g

)
= (m+M)g − (m+ 2M)

m+ 2M

m+ 4M
g

=
(m+M)(m+ 4M)− (m+ 2M)2

m+ 4M

=
m2 + 4Mm+Mm−m2 − 2Mm− 2Mm− 4M2 + 4M2

m+ 4M

T =
Mm

m+ 4M
g

This problem was found in the book ’Aptitude Test Problems in Physics’ by S.S. Krotov though in that problem, only
velocity was asked for.

pr 32. When the pulley is let go, one side of the rope will go up a distance ξ while the other side will
go down a distance ξ. The change in potential energy of this is the categorized as

Π(ξ) = −ρg(L− 2l − πR)ξ =⇒ −Π′(ξ) = ρg(L− 2l − πR)

The kinetic energy of the system will then be

K =
1

2
mξ̇2 +

1

2
ρLξ̇2

This implies that the effective mass, M, is M = m+ ρL. We then get the acceleration of the system to
be

a ≡ ρg(L− 2l − πR)

m+ ρL
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Now, we write for the displacement of parts of the system times their mass divided by the total effective
mass of the system M. Differentiating that with respect to ξ will give us our accelerations in the x and
y direction. In the x direction, we have

x =
2Rξρ

m+ ρL

ax =
2Rρa

m+ ρL

In the y direction, we have

y =
(L− 2l − πR)ρξ

m+ ρL

ay =
(L− 2l − πR)ρa

m+ ρL

By F = ma, we have the direction of force in the x and y direction to then be

Fx = 2Rρa

Fy − (m+ ρL)g = −ρa(L− πR− 2l)

∴ Fy = −ρa(L− πR− 2l) + (m+ ρL)g

pr 33. Since the second block is being pushed rightwards with some velocity it is in turn pulling more
string outwards. By conservation of string, the block that isn’t pushed will be pushed upwards because
less string is there to sustain it’s mass. Thus the answer is that the block that isn’t pushed will reach
higher after subsequent motion.

Let the tension in the string be T . Then at a certain instant, when the angle between the right mass
and the vertical is α, we have the component of vertical force to be

Fy1 = mg − T cosα.

At the other end, we have the component of vertical force to be

Fy2 = mg − T.

Comparing the two accelerations at both ends gives us

a2 − a1 =

(
g − T

m

)
−
(
g − T

m
cosα

)
=
T

m
(1− cosα)

which is always a non negative number. This implies that at any instant, the right load is lower than
the left load.

This problem was found in the book ’Aptitude Test Problems in Physics’ by S.S. Krotov though in that problem, only
velocity was asked for.

36



Kalda Mechanics 37

pr 34. Let the friction force directed on the block to the right be f1, the friction force directed on to the
block on the left be f2, and let the tension directed from the string be T . Drawing a freebody diagram
results in 4 equations. (The two small blocks have the same accelerations because they are connected by
the same string).

F − f1 = Ma1 (4)

f1 − T = ma2 (5)

f2 = Ma3 (6)

T − f2 = ma2 (7)

We consider four options: all the bodies move together, the rightmost block moves separately, all three
components move separately, or the left block moves separately.

Case 1: (all the bodies move together, a1 = a2 = a3)

Since all the bodies move together, then they move at the same acceleration. This means that our
equations are now

F − f1 = Ma (8)

f1 − T = ma (9)

f2 = Ma (10)

T − f2 = ma (11)

Substituting equation (3) into equation (4) gives us

T −Ma = ma

T = (m+M)a

Substituting our result for tension into equation (2) gives us

f1 − (m+M)a = ma

f1 = (2m+M)a

Taking this result and now substituting into equation (1) gives us

F − (2m+M)a = Ma

F = 2(m+M)a

a =
F

2(m+M)

From equation (1), we note that
F −Ma = f1 ≤ µmg

Plugging in our equation for acceleration gives us

F −M F

2(m+M)
≤ µmg

F

(
1− 1

2(m+M)

)
≤ µmg

F

(
M + 2m

2(m+M)

)
≤ µmg

F ≤ 2µmg
m+M

m+ 2M

37



Kalda Mechanics 38

Case 2: (The rightmost block moves separately, a2 = a3, f2 = µmg)

In this case, we have our equations to be

F − µmg = Ma1 (12)

µmg − T = ma2 (13)

f2 = Ma2 (14)

T − f2 = ma2 (15)

From this, we find that

a1 =
F − µmg

M

a2 =
µmg

M + 2m

For the block to move, we must have

Ma2 ≤ µmg
µmMg

M + 2m
≤ µmg

M

M + 2m
≤ 1

This works, since both the denominator is greater than the numerator. Thus, we can continue with our
calculations and find that from case 1, we have that if the force is

F ≤ 2µmg
m+M

m+ 2M

then our acceleration would be

a =
F

2(m+M)

if the force does not satisfy that constraint, then we have the accelerations to be the results we found
before.

Case 3: (all three components move separately, a1 6= a2 6= a3)

If a1 6= a2 6= a3, then that implies that the f1 = µmg and f2 = µmg. Looking at our systems of equations

F − f1 = Ma1 (16)

f1 − T = ma2 (17)

f2 = Ma3 (18)

T − f2 = ma2 (19)

We find that a2 = 0 which is impossible.

Case 4: (the left block moves separately, a1 = a2, f2 = µmg) Our systems of equation would then be

F − f1 = Ma1 (20)

f1 − T = ma1 (21)

µmg = Ma3 (22)

T − µmg = ma1 (23)
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Solving these equations gives us

a1 =
F − µmg
M + 2m

Substituting back into equation (1) gives us

F − f1 = M
F − µmg
M + 2m

F −MF − µmg
M + 2m

≤ µmg

Multiplying across gives us

(M + 2m)F −M(F − µmg) ≤ µmg(M + 2m)

Solving this inequality gives us
F ≤ µmg

which is impossible because that would then imply that a1 ≤ 0.

pr 35. The angle two equal masses make after an elastic collision will be a right angle, and thus if the
stationary ball is placed on a semi-circle where the two holes form the diameter, then the description is
possible according to Thales’ Theorem.

pr 36. a) Denote the first ball with a final speed v1 and the other two balls with final speed v2.

v

30◦

30◦

In this problem, we’re given an elastic collision, so we know that both momentum and energy are
conserved. Conservation of momentum gives

v1 +

√
3

2
v2 +

√
3

2
v2 = v =⇒ v1 +

√
3v2 = v,

and conservation of energy gives

2

(
1

2
mv2

2

)
+

1

2
mv2

1 =
1

2
mv2 =⇒ 2v2

2 + v2
1 = v2.

This gives us two equations. Our goal is to find v1, thus we first rearrange our conservation of momentum
equation to get v2 in terms of v1 and then substitute back in to get v1.

v1 = v −
√

3v2

putting this in to our conservation of energy equation gives us

2(v −
√

3v2)2 + v2
1 = v2.
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Expanding this equation out gives us

2v2
2 + 3v2

2 − 2
√

3v2v + v2 = v2

Taking out v2 from both sides, and then dividing by v2 on both sides gets us the equation

2v2 + 3v2 − 2
√

3v = 0 =⇒ 5v2 = 2
√

3v =⇒ v2 =
2
√

3

5
v

Substituting v2 back into our conservation of momentum equation gives us

v1 = v −
√

3
2
√

3

5
v =⇒ |v1| =

1

5
v.

b) Suppose the moving ball first strikes the lower ball. Let the x-direction point in the line joining
their centers. Therefore, v1,x = v cos 30◦ and the perpendicular component of velocity is v1,y = v sin 30◦.
Note that the impulse acts along line joining their center, therefore the perpendicular component of its
velocity is unchanged. Conservation of momentum gives:

v1,x = v′1 + v′2

Conservation of energy:

v2
1,x + v2

1,y = v′21 + v2
1,y + v′22 =⇒ v2

1,x = v′21 + v′22

Notice that in the x-direction, this gives the same behavior as a head-on collision between two identical
balls. Therefore, the velocity of the moving ball becomes zero along the x-direction. Now the moving
ball will strike the upper ball with a speed v cos 30◦.
This second collision is identical to the first. The component of velocity along the line joining their
centers is (v cos 30◦) sin 30◦ and the component of velocity perpendicular to this line is (v cos 30◦) sin 30◦.
Again, only the component of velocity perpendicular to this line will survive at the end so the final
answer is:

vf = v sin2 30◦ =
v

4

pr 37. We use idea 55, and visualise the motion using a graph, particularly let us plot the x− t graph
of each bead on the same plane. For simplifications, let us consider the collision of just two beads.
Since they have the same mass, the elastic collision will cause them to swap velocities. The below graph
shows the interaction between a blue and green particle. Even though each individual bead exhibits a
zig-zag behaviour, together it appears as if it is two straight lines intersecting, with the intersection point
representing the point of collision.
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x

t

Since we have all the n lines intersecting with another line at exactly one point, and no three lines
intersect at a point (the probability that more than two beads will collide at the same time is negligibly
small), we have the number of intersections (collisions) in the graph as(

n

2

)
=

n(n− 1)

2

pr 38. The velocity of the small block in the center of mass frame is Mv
m+M while the velocity of the

large block in the center of mass frame is mv
m+M . The work done by friction is µmgL, thus we can create

a conservation of energy equation

1

2
m

(
Mv

m+M

)2

+
1

2
M

(
mv

m+M

)2

= µmgL

v2

(
mM2 +Mm2

(m+m)2

)
= 2µmgL =⇒ v2

(
mM(m+M)

(m+m)2

)
= 2µmgL

v =

√
2µgL

(
1 +

m

M

)

pr 39. Between successive images, the time difference ∆t is constant. Therefore, the velocity and
consequently momentum is directly proportional to the distance between successive images. Let us
assume the time differences is ∆t = 0.01 s.

41



Kalda Mechanics 42

Therefore, we can list the following linear momenta (starting from top left going counterclockwise)

a: px = 1.61ma

py = 1.61ma

b: px = 0.482mb

py = 1.58mb

c: px = 3.26mc

py = 1.96mc

d: px = 4.35md

py = 1.85md

These results were measured by averaging the distance between consecutive points. It is clear that the
second ball has to come from the right. If it came from the bottom left, it is impossible to increase the
system’s horizontal momentum. Therefore, we really only have two options.

1) Second ball comes from top right. Again, there are two options. Let us select ma = mc and mb = md.
In this case, we have:

1.61ma − 4.35md = 3.26ma − 0.482md =⇒ ma = −0.43md

Clearly this doesn’t work. Let us now select ma = mb and mc = md

1.61ma − 4.35md = −0.482ma + 3.26md =⇒ ma = 0.275md

1.61ma + 1.85md = 1.58ma + 1.96md =⇒ ma = 0.273md

This could work, though let us look at the second case before deciding.
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2) Second ball comes from bottom right. Again, there are two options. Let us select ma = md and
mb = mc. In this case, we have:

1.61ma − 3.26mc = 4.35ma − 0.482mc =⇒ ma = −0.99mc

Clearly this doesn’t work. Finally, we must have ma = mb. In this case, we have:

1.61ma − 3.26mc = −0.482ma + 4.35mc =⇒ ma = 0.275mc

1.61ma − 1.96mc = 1.58ma − 1.85mc =⇒ ma = 0.273mc

This gives a mass ratio of mc/ma = 3.6 .

Now, notice that this mass ratio makes both coming from the top right and coming from the bottom
right possible. However, notice that coming from the bottom right to the top right, the ball will pick up
momentum. Due to Newton’s third law, the ball coming from the top left must lose momentum, which
is indeed the case. If the ball instead came from the top right, both balls would be losing momentum,
violating Newton’s third law. Therefore, the ball came from the bottom right

pr 40. The key difference between the barrels is that the walls in barrel provide a non-zero momentum
to every small elemental mass that exits through the tap, while the other does not. Some non-zero work
is done by the force exerted by these walls on the water molecules, which is not true for the other . So
we first write the conservation of energy equation for the barrel: Let the small dm mass of water element
exit at a velocity v1 from the tap of the barrel,

1

2
dmv1

2 = dmgH

and by impulse momentum theorem,

Fwalls = dmv2 =⇒ (ρgA0H)dt = (ρA0v2dt)v2

From these two equations, we have the answers
√

2gH and
√
gH .

pr 41. At a small incremental time dt, the mass dm that is poured onto the conveyor belt is given by

dm = µdt

This implies that the change in momentum dp is given by (v is the velocity of the conveyor belt that is
pulling the sand up)

dp = dmv = µvdt.

By Newton’s second law, the amount of force that is directed upwards on the crane is given by

Fup =
dp

dt
=
µvdt

dt
= µv.

We note that there is a force of gravity that is directed downwards. The total mass of all the sand grains
on the conveyor belt with length ` is given by m = µ

v `
a thus, the force that is directed downwards is

given by

Fdown = mg sinα =
µ

v
` sinα
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This gives us the total force to bring sand grains up on a conveyor belt as

F = µv +
µ

v
` sinα.

Minimizing this function by differentiating with respect to v gives us

µ− µ

v2
` sinα =⇒ v =

√
g` sinα.

Substituting this expression back into our expression for force gives us

Fmin = µ
√
g` sinα+

µ√
g` sinα

` sinα = 2µ
√
g` sinα

The minimum torque is then given by

τ = Fmin ·R = 2µR
√
g` sinα

am = σL where σv = µ.

pr 42. The velocity of the blob just when the blob is about to hit the surface is found by conservation
of mechanical energy

1

2
mv2 = mgh =⇒ v =

√
2gh

The Impulse (change in momentum) imparted perpendicular to the blob is clearly

∆p⊥ = m
√

2gh

From idea 60,

∆p⊥ =

∫
µNdt = µ∆p‖ =⇒ ∆p⊥ = µm

√
2gh

Hence

v = u− µ
√

2gh

pr 43. Let us observe what happens to the work done at small changes of da and dh.

da

dl
dh

The work due to friction will be
Wf = µmg cosφdl

Since dl cosφ = da then
Wf = µmgda
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Integrating all of these small work variables from 0 to a gives us the work produced by friction as

Wf = µmga

The work produced by gravity is mgh thus the total work Wtot is

Wtot = mgh+ µmga = mg(h+ µa)

pr 44. First, let us use a little bit of lagrangian formalism to make the problem slightly easier. Let ξ
be the displacement along the slanted surface. The kinetic energy is given by

K =
1

2
Iω2 +

1

2
(M +m)ξ̇2

We know by the basic formula v = ωr, that ω = ξ̇
R , thus

K =
1

2
MR2

(
ξ̇

R

)2

+
1

2
(M +m)ξ̇2

Moving around variables gives us

K = Mξ̇2 +
1

2
mξ̇2

From here we find that M is given by

K =
1

2
(2M)ξ̇2 +

1

2
mξ̇2 =⇒ M = 2M +m

The potential energy at a small displacement ξ is given by

Π(ξ) = (M +m)g sinαξ =⇒ Π′(ξ) = (M +m)g sinα

Therefore, we get that the acceleration is given by

a =
Π′(ξ)

M
=

(M +m)g sinα

2M +m

Substituting in m = M/2 and α = 45◦ given in the problem gives us

a =
3g

5
√

2

Having found the acceleration a, we now move into the non-inertial frame. With a geometrical argument,
we see that by law of sines

sin(α− β)

ma
=

sin(90 + β)

mg

Rearranging gives us
a

g
=

sin(α− β)

cosβ
= sinα− cosα tanβ

Substituting our value for a gives us

3

5
√

2
=

√
2

2
−
√

2

2
tanβ

tanβ =
2

5
=⇒ β = arctan

2

5
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pr 45. a) The angular momentum of the rod about the end of it’s axis before the collision is defined
by

L0 = Mvl − 1

3
Ml2ω.

After the rod collides with the post it’s angular momentum right after impact is

La = Mv′l − 1

3
Ml2ω′.

Since angular momentum is conserved in the entire process we have

L0 = La =⇒ Mvl − 1

3
Ml2ω = Mv′l − 1

3
Ml2ω′ =⇒ v − 1

3
ωl = v′ − 1

3
ω′l.

We know that the condition for the rod being at the end, is the relation

v′ + lω′ = 0 =⇒ ω′ = −v
′

l

Substituting our relation of ω′ and v′ into our simplified angular momentum equation gives us

v − 1

3
ωl =

4

3
v′

v′ =
3v − ωl

4

b) From part a) we have the equation

v − 1

3
ωl = v′ − 1

3
ω′l.

The kinetic energy before is

K =
1

2
Mv2 +

1

2

(
1

3
Ml2

)
ω2 =

1

2
Mv2 +

1

6
Ml2ω2.

Therefore we have to equations of conservation of kinetic energy and angular momentum

3v − ωl = 3v′ − ω′l
3v2 + ω2l2 = 3v′2 + ω′2l2

rearranging both of these equations and factoring gives us two new equations of

3(v − v′) = l(ω − ω′)
3(v2 − v′2) = l2(ω′2 − ω2)

Solving these equations gives us v′ =
v − ωl

2
.

pr 46. We use the idea that if a body collides with something, then its angular momentum is conserved
with respect to the point of impact. Upon impact with the ball, the rotation is reversed. When the ball
hits the sweet spot of the bat, the hand-held end of the bat should come to halt without receiving any
impulse from the hand. Let us use this information to try to solve this problem. Let x be the distance
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from the center of rotation to the center of percussion. The angular momentum with respect to the
impact point before collision will then be

Li = mv

(
x− `

2

)
− I0ω

where v = ω `
2 and I0 = 1

12m`
2. After the impact, the bat turns backwards with an angular velocity ω′,

thus the angular momentum after is

La = mv′
(
x− `

2

)
− I0ω

′

where v′ = ω′ `2 . We also remember that the bat should come to a halt without recieving any impulse
from the hand which means that the angular momentum with respect to the center of rotation after is
actually 0. This means that

La = mv′
(
x− `

2

)
− I0ω

′ = 0.

This intuitively makes sense because ω′ will have to be zero after collision. Setting up our angular
momentum equations Li = La gives us

Li = mv

(
x− `

2

)
− I0ω = 0

m

(
ω`

2

)(
x− `

2

)
=

1

12
m`2ω

x− `

2
=
`

6
=⇒ x =

2`

3

Solution 2. Consider the angular impulse on the bat which is given as

Iθ =

∫
~τ(t) dt = ∆~L.

If the ball hits the bat with a force F a distance x away from the bat, we write

Iθ =

∫
Fx dt = Ihingeω =⇒

∫
F dt =

Ihingeω

x
.

Now, consider the impulse obtained by the bat. We can write that

I =

∫
F dt+

∫
R dt = Mvcm

where vcm = ω `
2 where ` is the length of the bat and R is the force that the hand holding the bat exerts.

When the ball hits the sweet spot, we note that
∫
R dt = 0 since there is no stinging feeling on the hand

and that
Ihingeω

x
= Mω

`

2
=⇒ x =

2 · 1
3M`2ω

M`
=

2

3
`.
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pr 47. Let f be the frictional force created by the floor. We then have two equations

F − f = mẍ

fR− F (R− a) = Iθ̈

We first find the force created by friction. Noting that the YoYo rolls without slipping. We use the
relation ẍ = rθ̈. Substituting this into the second equation gives us

fR− F (R− a) =
1

2
mR2 ẍ

R
=⇒ fR− F (R− a) =

1

2
R(mẍ)

Substituting in our first equation gives us

fR− F (R− a) =
1

2
R(F − f)

Rearranging and simplifying gives us
3

2
fR =

3

2
FR+ Fa

This tells us

f = F +
2

3

Fa

R
.

Now substituting our relation for friction into our first equation gives us

F −
(
F +

2

3

Fa

R

)
= mẍ

|a| = 2

3

Fa

mR

By Parallel axis theorem we see that

I ′ = I0 +m`2 =⇒ I ′ =
1

2
MR2 +MR2 =

3

2
MR2

The torque produced by the string is given by

τ = Fa = Iα =⇒ Fa =
3

2
MR2

(ar
R

)
Simplifying gives

Fa =
3

2
MRar

ar =
2

3

Fa

MR

pr 48. Let us direct the z axis upward (this will fix the signs of the angular momenta). We first attempt
to find the initial angular momentum. We note that

L = MvR+ Iω

Substituting in I = 2
5MR2 and v = ω/R gives us L = 7

5MvR. In the x-axis, the sign of angular
momentum is negative because of the right hand rule, and in the y-axis the sign of angular momentum
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is postive. This gives us,

Lx = −7

5
Mvy0R

Ly =
7

5
Mvx0R

The ball will continue to move in the same velocity in the y-direction as no non-conservative forces are
acting in the horizontal direction. In the x-axis, the ball will have a final velocity of u, which implies
that the final angular momentum is

Lxf = −7

5
MvyR−MuR

Setting this equal to the initial angular momentum because of conservation of angular momentum, we
get

−7

5
MvyR = −7

5
MvyR−MuR

7

5
vy0 =

7

5
vy + u

vy = vy0 −
5

7
u

This gives the final velocity to be (vx0 , vy0 −
5

7
u) .

pr 49. Immediately after the first collision, the center of mass of both dumbbells are at rest. Then,
the velocities of the colliding balls reverse direction and the non-colliding balls’ velocities don’t change.
Both dumbbells act like pendula and complete half an oscillation period, after which the second collision
occurs – analogous to the first one where the dumbells expand outwards and hit each other. After that
they separate and move a distance L to create SHM.

Thus, let us create three times t1, t2, and t3 summing all the individual time components results in the
total time t for SHM.

Calculating t1: t1 is the time when the dumbells’ first hit each other when they are first initially
separated a distance L. Both dumbells move at an initial velocity v0, thus the time when both of them
hit at the same time is equivalent to when one of the dumbbells travels a distance L/2. Therefore, using
v = d/t, we get

t1 =
L

2v0

Calculating t2: After the collision, the velocity of the colliding balls reverse direction and the non-
colliding ball’s velocities don’t change. This results in the spring to fully compress, the time for the
spring to do so and then expand again to the second collision is t2. Both dumbbells will act like an
oscillator and complete half an oscillation period during time t2. Both dumbells will move towards each
other and compress the dumbell to half its length making the spring constant two times larger before
recoil. Therefore, the oscillation period is given by

ω =

√
2k

m
=⇒ t2 = π

√
m

2k
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Calculating t3: The last time, t3 is simply the time for both dumbbells to move outwards a distance
L. This is the same as t1 or L

2v0
.

Thus, the total time is

t = t1 + t2 + t3 =
L

2v0
+ π

√
m

2k
+

L

2v0
=

L

v0
+ π

√
m

2k

pr 50. We use the fact that effective gravity is given as geff = g cosα. This directly means that

T = 2π

√
R

g cosα
.

The particle will exit at B if the time to cross the trough along its axis is an integer multiple of the
oscillation’s half-period. Thus, the length will be given as a

L =

(
n+

1

2

)
T

2
.

Thus,

L =
1

2
g sinα

((
n+

1

2

)
T

2

)2

=
1

2
g sinα

(
n+

1

2

)2 π2r

g cosα

=
π2

2
tanα

(
n+

1

2

)2

aThere is a factor of one half added to the statement because not all the particles exit at the bottom of the gutter

pr 51. Label the three scenarios from left to right as A, B, and C.

The period is proportional to T 2 ∝ I
`cm

. Since all the hangers have the center period, this ratio must be
the same for all three situations. If the moment of inertia about the center is I0 then we have:

I0 +M`2a
`a

=
I0 +M`2b

`b
=
I0 +M`2c

`c

Due to symmetry, the center of mass must lie on the vertical line passing through the position of the pin
at A and B. This gives us:

`a + `b = 0.1

Looking at the first pair of this three-way equality, we see that it is a quadratic. We do not have to
invoke the quadratic formula here! From inspection we see that the trivial solution is `a = `b. However,
there is another solution if this condition isn’t satisfied! However, if `a 6= `b, then we can see that either
`a = `c or `b = `c per the same reasoning. Or in short, at least two of `a, `b, or `c are the same.
However, since the center of mass can’t lie outside the clothes hanger, we know that `a 6= `c and `b 6= `c
so we must have `a = `b = 0.05 m
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We can now determine the third length to be `c =
√

0.212 + 0.052 = 0.216 m Using the first and third
pair of the three-way equality, we can solve for I0 to be:

I0 = M(`c + `a)`a`c

thus, plugging it into the formula for period gives:

T = 2π

√
M(`c + `a)`a`c +M`2a

Mg`a
= 1.03 s

pr 52. Using method 6, we find that the kinetic energy of the system is

K =
1

2
(m+ αρ0V )

where the constant α is a number that characterizes the geometry of the body that correspond to the
extent of the region of the liquid that will move (compared to the volume of the body itself). This
expression is obtained by noticing that the characteristic speed of the liquid around the body is v, and
the characteristic size of the region where the liquid moves (the speed is not much smaller than v) is
estimated as the size of the body itself. If a body is acted on by a force F , then the power produced by
this force is

P = Fv =
dK

dt
= va(m+ αρ0V ).

Thus
F = a0(m+ αρ0V ).

We also know by Archimedes principle that,

F = ρV g − ρ0V g

Thus, by equating these two forces to each other, we get

a0(m+ αρ0V ) = ρV g − ρ0V g.

We know that m = ρV so,

a0(ρV + αρ0V ) = ρV g − ρ0V g =⇒ a0(ρ+ αρ0) = ρg − ρ0g

Dividing by a0 on both sides, and subtracting ρ gives us

αρ0 =
ρg − ρ0g

a0
− ρ =⇒ α =

1

ρ0

(
ρg − ρ0g

a0
− ρ
)

Substituting known relations gives us α = 0.5. For the rising bubble, the effective mass is exactly the
same, however this time, the mass dm of the bubble is negligibly small. Thus, we have the equation

F = a0(dm+ αρ0V ) = ρV g − dmg

Taking dm ≈ 0 gives us

a0αρ0 = ρ0g =⇒ a =
g

α
= 2.0g

51



Kalda Mechanics 52

pr 53. Let the incoming mass flow rate be labelled µi and it is divided into the flow rates µ1 and mu2.
By the equation of continuity, we have

µi = µ1 + µ2

By Bernoulli’s law (or by idea 71 and fact 30), the velocity of both the left and the right compartment
is same and equal to v. Now, by conservation of momentum in the horizontal direction (idea 72), we get

µiρ(v cosα) = µ1ρ(v)− µ2ρ(v)

which simplifies to
µi cosα = mu1 − µ2

From this equation and our initial equation of continuity, we have

µ1 = µi cos2 α

2

and
µ2 = µi sin2 α

2

Hence,
µ1

µ2
=
µi cos2 α

2

µi sin2 α
2

= cot2 α

2

pr 54. Consider a control volume that encloses the wave front and moves with it, as shown in figure.
To an observer traveling with the wave front, the liquid to the right appears to be moving toward the
wave front with speed u and the liquid to the left appears to be moving away from the wave front with
speed u− v. The observer would think the control volume that encloses the wave front is stationary i.e.
a steady flow process. The continuity relation gives

uH = (u− v)(H + h) =⇒ v = u
h

H + h

Also we can say
P2,avgA2 − P1,avgA1 = ṁ(−V2)− ṁ(−V1)

=⇒ ρg(H + h)2

2
− ρgH2

2
= ρc0y(−u+ v)− ρuH(−u)

=⇒ g

(
1 +

h

2H

)
h = vu

Combining the two equations gives

u2 = gH

(
1 +

h

H

)(
1 +

h

2H

)
As h� H,

u =
√
gH

A Generalization: For any given height h, the dispersion relationship is:

ω2 = gk tanh(kh)
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where ω is the angular frequency and k is the wavenumber (number of wavelengths per unit distance).
For small values, we have tanh(kh) = kh or:

ω2 = gk2h =⇒ ω = k
√
gh

The speed the waves will be travelling at, or the phase velocity, will be:

v =
ω

k
=
√
gh

For large values of h, we have tanh(kh) = 1 or:

ω2 = gk =⇒ v =

√
g

k

This tells us that waves with higher wavenumbers (e.g. tsunamis) travel faster than waves with lower
wavenumbers.

pr 55. a) We can draw an analogy with thermodynamics. Since the process is slow, and there are no
external work being done, we can say that the process is adiabatic, that is:

TV γ−1 = constant

Here,

γ =
1 + 2

1
= 3

since there is only one degree of freedom. Therefore, when the distance doubles, the volume doubles and
V γ−1 will quadruple. As a result, T will decrease by a factor of four. However, since T ∝ v2, the speed
must decrease by a factor of two. Therefore,

v = 5 m/s

b) The average force corresponds with the pressure. We have:

PV γ = constant

Since the V γ term increases by a factor of eight, pressure, and thus the average force will decrease by a
factor of eight.

Solution 2: We can analyze the adiabatic invariant of the system. Let us draw a phase diagram of the
entire system.

x

p(x)

mv

L
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From here, we see that the adiabatic invariant of the system is given by

I = 2mvL

where v and L can change. Thus, the initial adiabatic invariant, I0, is given by 2mv0L, and the final
adiabatic invariant, If , is given by 2mv(2L) = 4mvL. This means that

I0 = If =⇒ 2mv0L = 4mvL

v =
1

2
v0 = 5 m/s
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3 Solutions to Revision Problems

This section will contain problem 55-86 of the handout. Revision problems take concepts and ideas from earlier
problems and places them in a new context. As a result, many of the problems in this section will seem
familiar. This however, does not mean that all the problems in this section are easy. Some of the hardest
problems originate in this section.

pr 56. a) Let the normal force from the floor on the ladder be N . Then, at the cutoff case, the friction
force takes on it’s maximum, so the friction from the floor is µN .

θ
N2

µN

N1

mg

Since the ladder is in equilibrium, we have three equations. These is the equation of equilibrium of force
in the horizontal and vertical direction and as well as torques. Looking quickly at the vertical forces, we
can see easily that N2 = mg. Then by looking at the horizontal forces, we see that N1 = µN . Therefore,
there is only one equation of torque remaining.

We first have to find the pivot point of the ladder. Generally, the pivot point of the system is located
where there are more forces. Thus, by looking at the ladder, we see that the pivot point of the system
is the bottom of the ladder. Balancing the torques due to gravity and N1, we have

N1` sin θ = mg(`/2) cos θ =⇒ N1 =
mg

2 tan θ

This is also the value of the frictional force F as we have found before. Thus, by using F ≥ µmg we find

mg

2 tan θ
≤ µmg =⇒ tan θ ≥ 1

2µ

b) Drawing a freebody diagram gives us the following diagram

θ
N

µNµN

mg

We see that from force balance that there is not an opposite force to oppose the force of µN from the
wall. This means that it is impossible for the ladder to stay still in this case.

There is an easier way to solve part a. Let us project the gravitational force vector mg and the normal
force from the wall N1 such that they meet at a point above the middle of the ladder. At this location,
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the torque caused by these two forces is zero. In order to be in static equilibrium, the force from the
ground must also intersect this point. The slope the force from the ground makes with the horizontal is
2 tan θ.

θ

N1

fground

mg

Since the force from the ground is consisted of both the normal force N2 and the friction force fs, we
have:

2 tan θ =
N2

fs

Combining this with fs ≤ µN2 gives:

tan θ ≥ 1

2µ

pr 57. Let us consider the situation when the bug has travelled a distance x from the upper end and
is moving with a speed vb. The stick always remains at rest, that is, making an angle α with the floor.
When at a distance `− x from the lower end of the rod, the torque on the bug about the bottom-most
point (call this point O) is due to gravitational force on the bug and is equal to

~τO = ~r × ~F = mg(`− x) cosα k̂

At this moment, the angular momentum of the bug can be written as

~LO = mv` sinα cosα k̂

So, we have

~τO =
d~LO
dt

=⇒ m` sinα cosα
dv

dt
= mg(`− x) cosα

=⇒ dv

dt
=
d2x

dt2
=

g

sinα
(1− x/`) = − g

sinα
(x− `)

Notice that the second derivative of position of the bug (with respect to the point O) is proportional to
the negative of its distance from point O. But this resembles the equation of a simple harmonic motion
being executed about the mean position O! So, as found above, we have

abug =
g

sinα
(1− x/`)

where
√

g
l sinα can be considered to be the angular velocity of this hypothetical simple harmonic motion.

The time taken by the bug to reach the bottom-most point is simply one-fourth the time period of the
simple harmonic motion (T0), so

Tbug =
T0

4
=

π

2

√
` sinα

g
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Solution 2: The stick provides an acceleration a to the bug, so the bug exerts a force ma to the rod,
pointing along the rod. In order to be stationary, we must have the normal force from the ground be
N1 = mg. To balance torques about the bug, we have:

N1 cosα(`− x) = N2 sinα` =⇒ N2 = mg cotα (1− x/`)

The net force has to be zero, so we can add the vectors N1, N2, and ma (which forms a right angle
triangle). The horizontal component of the force the bug exerts on the rod ma cosα has to balance out
N2 or:

ma cosα = mg · cosα

sinα
(1− x/`) =⇒ a =

g(1− x/`)
sinα

This can also be written as:
ẍ = − g

` sinα
x+

g

sinα

This gives the equation for simple harmonic motion with a period of:

T = 2π

√
` sinα

g

Travelling from the top to the bottom corresponds with one quarter of the period (maximum potential
energy to maximum kinetic energy), so:

t =
π

2

√
` sinα

g

pr 58. The key insight is noting if the net vertical forces of the normal and friction forces were directed
downwards then the stopper would be blocked. Let us then try to calculate the vertical components
of forces that are involved. Let the normal force directed on the wedge be N . We then know that the
vertical component of the normal force is clearly either N cosα or N sinα. We can figure the component
by chasing angles around, but an easier way is to imagine α→ 0. In this case, the horizontal component
of the normal force also goes to zero, which is the behavior of a sine function, so the horizontal component
is N sinα. This in turn means that the vertical component of force involved is N cosα.

We now try to find the vertical component of friction involved. The friction force directed downwards
on the direction of the wedge is µN (because N is already perpendicular, you do not have to manipulate
it with trigonometric functions). This means that the vertical component of friction is µN sinα.

We now equate these, with an inequality where the vertical component of the normal force greater than
the friction force for the wedge to pass through.

N cosα > µN sinα

µ < cotα

pr 59. Two forces act on the rod in the vertical direction, it’s weight and the force of friction, where
at its maximum is µN1. As the weight increases, we must have N1 increase as well. Let us look at the
limiting case where Wrod → ∞. The normal and friction forces acting on the cylinder will be so large
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that the mass of the cylinder will be negligible, thus we can ignore the force mg. This allows us to
effectively turn gravity off.

Let us now rotate the setup by an angle α/2 such that it is completely symmetrical along its vertical
axis. It is clear that the horizontal forces will cancel each other out.

Now we just have to balance out vertical forces. Due to symmetry, the y-component of each friction
force cancels out with the y-component of each normal force. For the left side, we have:

N1 sin(α/2) = µ1N1 cos(α/2) =⇒ µ1 > tan(α/2)

We have the inequality since the force balance equation gives the maximum friction. Similarly for the
other side:

µ1 > tan(α/2)

pr 60.

C

PL

Here P is the point of contact of the plank with the hemisphere after turning through θ and L is the
original contact point. C is the centre of mass of the plank.

To solve the problem, let us turn the plank through an angle of θ and consider the torques at that
moment. First of all, we see that

∠POL = 90◦ − ∠OLP = θ

We want C to generate a clockwise torque about P , so the distance between C and OL must be greater
than the distance between P and OL. This means

h

2
sin θ < R sin θ =⇒ R >

h

2
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If the initial position was stable, then slight deviations would cause the center of mass to be higher.
Therefore, we want:

c cos θ +Rθ sin θ +
h

2
cos θ > R+

h

2

Using cos θ ≈ 1− θ2

2 and sin θ ≈ θ, we can rewrite the above inequality as:

R

(
1− θ2

2

)
+Rθ(θ) +

h

2

(
1− θ2

2

)
> R+

h

2

Simplifying, we see that the angle θ cancels out and we are left with:

R >
h

2

pr 61. Similar to problem 16, we want:

ρgh(πR2) = mg + V ρg

except this time:

V =
2

3
πR3 − πH2

(
R− H

3

)
=

2

3
πR3 − π(R− h)2

(
2R+ h

3

)
=

2

3
πR3 − π

3
(2R3 +R2h− 4R2h−���2Rh2 +���2Rh2 + h3)

= πR2h− π

3
h3

Plugging this in gives:

�����
ρgh(πR2) = mg +����

πR2hρg − π

3
h3ρg

or:

mg =
π

3
h3ρg =⇒ h = 3

√
3m

πρ

Verifying, if we plug m = π
3ρR

3, we do indeed get h = R.

pr 62. Assume the water surface pressure uniform. In the rotating frame of the water, every water
element is at rest. So in this rotating frame, the hydrostatics equation is

~F + ~Fcentrifugal − ~∇P = 0

where ~F = −ρgĵ is the force on the body per unit volume, ~Fcentrifugal the centrifugal force, and −~∇P is
the force due to the pressure gradient.
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−~∇P

~Fc

~F = −ρgĵ~R

~x

ω

Clearly, by definition we have ~Fcentrifugal = −ρ~ω × (~ω × ~R), hence the hydrostatic equation becomes

~∇P = −ρgĵ + ρω2xî

⇒ ∂P

∂x
= ρω2x ;

∂P

∂y
= −ρg

Integrating, we have

P =
ρω2x2

2
− ρgy

And assuming the surface pressure constant, this yields

ρω2x2

2
= ρgy ⇒ y =

ω2

2g
x2

Thus the cross sectional surface of the rotating water is a parabola with this equation Hence substituting
x = R gives the relative height near the edges of the vessel, which is just

∆h =
ω2

2g
R2

Solution 2: Consider a water particle on the surface. In the rotating frame, it experiences three forces,
a gravitational force downwards, a centrifugal force outwards, and a normal force perpendicular to the
surface.

ω

mω2r

mg

N

The three forces must sum up to zero. If we add them geometrically, they form a closed right angle
triangle

mω2r

mg

N

θ
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where tan θ = g
ω2r

Since the normal force is perpendicular to the surface, the slope of the surface at this
point is:

dh

dr
= cot θ =

ω2r

g

Integrating, from 0 to R, we get:

∆h =
ω2R2

2g

pr 63. First, let us move into an accelerated reference frame such that M is stationary. The acceleration
of M is:

Ma = T − T sinα =⇒ aM = T

(
1− sinα

M

)
Thus, m will have a fictitious force acting towards the right. The actual gravitational force and the
fictitious force combine together to give us the effective gravity.
Now keep in mind that even in this accelerated reference frame, m is not stationary. It is actually moving
in the direction parallel to the rope holding it and due to conservation of rope, the acceleration of m in
this frame is am = aM . Balancing forces, we get:

mgeff − T = maM

Substituting in geff = mg
cosα and aM , we get:

mg

cosα
− T = T

(m
M

)
(1− sinα)

We can solve for T to be:

T =
mg

cosα
· 1

1 + (m/M)(1− sinα)

The ratio of the fictitious force and the gravitational force form a right angle, such that:

tanα =
aM
g

=
T

mg
(1− sinα)

Substituting in T , cancelling out cosα on both sides, and solving for m/M (the algebra takes some time),
we get:

m

M
=

sinα

(1− sinα)2

pr 64. Let the normal force on the cylinder be N1, the normal force on the wedge be N2, and the normal
force between the cylinder and wedge be N . If the cylinder moves downwards with an acceleration a1

and the wedge moves upwards with an acceleration a2, we find from geometry that we have a constraint
equation of

Na1 cos(180− α) +Na2 cosα = 0

−a1 + a2 = 0 =⇒ a1 = a2

To find the acceleration, we use lagrangian formalism. Let the cylinder move down by a small amount
ξ, the wedge will then move upwards ξ meaning that the change in potential energy will become

Π(ξ) = (m−M)g sinαξ
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Differentiating this with respect to ξ gives us

Π′(ξ) = (m−M)g sinα.

The kinetic energy of the system in this case will then be given by

K =
1

2
(m+M)ξ̇2

which implies that M = m+M. This lets the acceleration become

a =
m−M
m+M

g sinα.

Projecting Newton’s laws onto the cylinder gives us the equation

mg sinα−N cosα = ma

Substituting our value of accceleration gives us

mg sinα−N cosα = m
m−M
m+M

g sinα

rearranging variables gives us

mg sinα

(
1− m−M

m+M

)
= N cosα

N = 2
Mm

m+M
g tanα

This problem was found in the book ’Aptitude Test Problems in Physics’ by S.S. Krotov though in that problem, only
velocity was asked for.

pr 65. Denote the horizontal accelerations of the three masses from right to left as a1, a2, and a3 as
shown in the diagram below. Let the vertical acceleration of the top mass be ay.

F1

a1

F1

a2

ay

F2

F2

a3

There is no external force in the horizontal direction, therefore:

ma2 +ma3 = 4ma1 =⇒ a2 + a3 = 4a1
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It can be shown as in the first solution that the component of acceleration of the top mass along the left
rod must be the same as the component of acceleration of the left mass along the left rod. This means:

a2 cos 45◦ + ay sin 45◦ = a3 cos 45◦ =⇒ ay + ay = a3

The same is true along the right rod, giving:

ay − a2 = a1

Solving these three equations, we get:

ay = 2a1

a2 = a1

a3 = 3a1

Using Newton’s Second Law on the rightmost mass, we have:

F1 cos 45◦ = (4m)a1

For the left mass,
F2 cos 45◦ = ma3 = m(3a1)

For the top mass in the vertical direction. We get:

mg − (F1 cos 45◦ + F2 cos 45◦) = may = m(2a1)

Substituting in F1 and F2 from above gives:

mg − 7ma1 = 2ma1 =⇒ a1 =
g

9

Solution 2: The top mass has 3 forces acting on it, a force F2 exerted by the rod on left (compressive),
F1 exerted by the rod on right (compressive), and the force of gravity mg. The 4m mass has only
horizontal acceleration. Therefore:

4mg +
F1√

2
= N

Now, in the non inertial reference frame of the top mass, the 4m mass has only a tangential acceleration
since the rod that separates them is fixed in length. As a result, we get the force balance:∑

Fradial =
∑

Finertial +
∑

Fpseudo

The inertial force acting on 4m in the radial direction is simply:

N − 4mg√
2

− F1

By switching into an accelerated reference frame where the top mass is at rest, we need to apply a
pseudo-force which acts in the opposite direction of the top mass’s net force. The acceleration of the top
mass in the radial direction is:

a =
F

m
=

1

m

(
mg√

2
+ F1

)
Thus, the radial component of the pseudo-force must point in the opposite direction. The pseudo-force
the rightmost mass experiences is thus:∑

Fpseudo =
−mg

m · 4m√
2

− F1

m
· 4m =

−4mg√
2
− 4F1
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Thus, we have:

0 =

(
N − 4mg√

2
− F1

)
+

(
−4mg√

2
− 4F1

)
Substituting in N gives

F1 =
4
√

2mg

9

Therefore,

a1 =
F1√

2 · 4m
=

g

9

pr 66. Solution 1. Let the acceleration of mass m along the incline be a and acceleration of mass M
in downward direction be a1. Since length of string remains constant therefore we have

a sinα = a1

Writing the force equations for both masses gives us

T sinα+mg sinα = ma

mg − T = ma1

Solving the three equations we get a1 = g sin2 α
M +m

m+Msin2α

Solution 2. In this problem it serves just fine to treat the angle that the mass leans back with respect
to the vertical as ϕ = 0 since we only care about the acceleration of the mass at the [i]instant[/i] that it
is released. Let the vertical generalized coordinate ξ of the mass M be directed vertically downwards as
shown in the diagram below:

M

m

ξ

ξ
sinα

α

Consider the kinetic energy of the system given by

K =
1

2
Mξ̇2 +

1

2
m

(
ξ̇

sinα

)2

=
1

2

( m

sinα
+M

)2
ξ̇2 =

1

2
Mξ̇2

where M is the effective mass given by

M =
m

sinα
+M.

Similarly, we can write the potential energy Π(ξ) as (since both masses go down by a distance ξ)

Π = −(M +m)gξ =⇒ Π′(ξ) = −(M +m)g.

By method 6, we note that the acceleration ξ̈ can then be written as

ξ̈ = −Π′(ξ)

M
= g

m+M

m+M sin2 α
sin2 α.
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pr 67.

P

θ

O

Let the point at where the object slips of the hemisphere be P . We then have by energy conservation
that

1

2
mv2 = mgR(1− cos θ)

This implies that v2 is
v2 = 2gR(1− cos θ)

At any point on the circle we have the Newton’s third law pair of

Fg = Fc + FN

However at the point where the object loses contact, the normal force becomes zero. This implies that

mg cos θ =
mv2

R

Taking out m from both sides and substituting v2 gives us

g cos θ =
2gR(1− cos θ)

R
2− 2 cos θ = cos θ

cos θ =
2

3

We know that cos θ = h
R , thus the height at which the object loses contact is h =

2

3
R

pr 68. Consider the reference frame moving with velocity v to the right. This frame is easier to work
with because here the end of the rod on the ground is at rest. Let’s call this end A. Let t = 0 correspond
to the time when the rod is vertical. At time t, the distance between A and the vertical wall is d = vt.
Let the angle between the rod and horizontal wall be

θ =
π

2
− α

such that

cos θ =
vt

2l
Differentiating with respect to time gives

θ̇ sin θ =
v

2l
=⇒ θ̇ =

v

2l sin θ

The velocity of the sphere is

θ̇(2l − x) =
v(2l − x)

2l sin θ
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perpendicular to the rod. Therefore, the x− component of the velocity

vx =
v(2l − x) sin θ

2l sin θ
=
v(2l − x)

2l

is constant, implying that ax = 0. Now the centripetal acceleration of the sphere

ac = θ̇2(2l − x) =
v2(2l − x)

4l2 sin2 θ

which is pointed towards A. We know that the acceleration is entirely in y, as ax = 0. As a result:

a sin θ =
v2(2l − x)

4l2 sin2 θ

a =
v2(2l − x)

4l2 sin3 θ

=
v2(2l − x)

4l2 cos3 α

=
v2

2l cos3 α
(
x

2l
− 1)

which is pointed in negative y direction. By Newton’s second law, we have:

N = mg −ma =⇒ N = m(g − v2(2l − x)√
2l2

)

Solution 2: We solve it for the general case. Let the place where both walls meet be the origin then we
can write the coordinates of sphere as

X = x1 − x sinα

Y = y1 − x cosα

Now differentiating Y with respect to time we get

vy = v tanα− v tanα
( x

2`

)
Now again differentiating it with respect to time we get

ay = ωv sec2 α
( x

2`
− 1
)

Also we have
ω =

v

2` cosα

Substituting it we get

ay =
v2

2`
sec3 α

( x
2`
− 1
)

Now using Newton’s law in y direction we get

4mg −N = may

Solving we get

N = m

(
g − v2 (2`− x)

l2
√

2

)
Note that ax = 0. Since vx = v

(
1− x

2l

)
is constant, therefore the rod/sphere will apply no force on

each other in the horizontal direction.
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pr 69. Let the velocity of the stick be v1, the velocity of the box be v2, m be the mass of the mass
on the stick, M be the mass of the box, and α be the angle v1 makes with the weight of the mass mg.
Because v2 is purely horizontal, we can easily see thata

v1 sinα = v2

Next, we use conservation of energy. Comparing initial to final, we get

mgL =
1

2
mv2

1 +
1

2
Mv2

2 +mgL sinα

mgL(1− sinα) = v2
1

(
m

2
+
M

2
sin2 α

)
v2

1 = =
2mgL(1− sinα)

m+M sin2 α

We now use idea 40. v1 and v2 are at maximum, thus ~N and ~F = 0. From our first and third relation,
we also have that

dv2

dt
= 0 =

√
2mgL(1− sinα) sin2 α

m+M sin2 α
.

Using Newton’s Second Law on the block, we have the following F = ma equation,

Ma0 sinα−N =
Mv2

1

L
cosα.

Using idea 40, ~N = 0 at the moment of leaving contact, and thus,

a0 sinα =
v2

1

L
cosα.

Substituting in v1 and simplifying gives

a0 =
2mgL(1− sinα) cosα

sinα(m+M sin2 α)

which is equal to g cosα as gravity is the only force causing the acceleration and N = F = 0). This
means that

g cosα =
2mgL(1− sinα) cosα

sinα(m+M sin2 α)

2m(1− sinα) = m sinα+M sin3 α

m(2− 3 sinα) = M sin3 α

M

m
=

2− 3 sinα

sin3 α

For α = π
6 , this means that

M

m
= 4 . Using this information from what we found, simplifies our

expression for v2 into

v2 =

√
2mgL(1− sinα) sin2 α

m+ 4m sin2 α
=

√
gL× 1

2
× 1

4
=

√
gL

8
.

aThis problem came in the book ’Aptitude Test Problems in Physics’ by S.S. Krotov.

67



Kalda Mechanics 68

pr 70. The centre of mass of the system is initially on the pulley. In the horizontal direction, the net

external force is provided by the tension forces (pulley), and it is always rightwards. (For the block to
have covered an angle α, the net horizontal force is ~Fext = T (1 − cosα)̂i which is always in positive î
direction. Hence the centre of mass moves right to the pulley throughout the motion. At the time of
collision, it is thus right of the pulley, which is only possible if the left block reaches the pulley first.a

aThis problem came in the Moscow physics olympics in the 1970s, and is also in the book ’Aptitude Test Problems in
Physics by S.S. Krotov. It is quite a famous problem.

pr 71. See problem 20, the hockey puck will travel in a straight line. Consider a differential piece

located at (x, y) and has a vertical component of velocity vy. At a location (−x, y), there will be a
differential piece with a vertical component of velocity −vy. Their horizontal components of velocity
will be the same. Thus, if we change their horizontal components of velocity, say by pushing the puck
rightwards, their vertical components will change in the same way such that they still cancel out to
zero. As a result, since there is always going to be another point which cancels out the perpendicular
component of velocity, the net force caused by friction in the perpendicular direction will be zero. The
puck will travel in a straight line.

We can use the fact that the friction force at each point in the ω 6= 0 case is not exactly opposite to the
direction of translational motion. In the ω = 0 case, the friction force at each point is exactly opposite
to the direction of motion. Furthermore, the magnitude of the friction force at each point is the same
in both cases. Thus, the total friction force in the direction opposite to the direction of motion is less in
the ω 6= 0 case, so the translational acceleration is less, so it will move a longer distance.

pr 72. Note that due to the fact that the thread is extremely long, there are no horizontal forces
exerted by the string and as a result, the horizontal momentum is conserved. We have:

mv = (M +m)u

Conservation of energy then gives:

1

2
mv2 =

1

2
(M +m)u2 = mg` =⇒ 1

2
mv2 =

1

2

m2v2

M +m
+mg`

Solving for v, we get:a

v =
√

2g` (1 +m/M)

aIt is good to check for limiting cases. If m/M → 0, we can ignore the horizontal components of velocity and just
conserve energy. We get the standard result v =

√
2g`. If M → ∞, then we need to provide an infinite speed to raise the

height as we stated the string is extremely long.

pr 73. We use idea 51 and list out all the possible combinations of objects moving together. Let us
label the surface between the top two masses as S1 and the surface between the bottom two as S2. We
have a few options:

• S1 static, S2 static

• S1 kinetic, S2 static

• S1 static, S2 kinetic
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• S1 kinetic, S2 kinetic

(1) Let us look at the first case. If this is the case, then we have:

F = 3ma =⇒ a =
F

3m

To analyze the conditions for this to occur, we must look at the friction forces. The second block
experiences two friction forces from two surfaces. Both forces f1 and f2 have to satisfy f1 < mgµ and
f2 < 2mgµ. Since the first condition is harder to meet (and if met, the second one is also met), we will
look at the first surface. The top-most block experiences two forces, a force of tension with magnitude
F/2 and a friction force −f1. Combined together, these forces give the bottom block the acceleration
calculated above. We have:

m

(
F

3m

)
=
F

2
− f1 =⇒ f1 =

F

6

Using the inequality f1 < mgµ we get the condition:

F

6
< mgµ =⇒ F

mgµ
< 6

(2) Now let’s look at the second case where the bottom two blocks stay together but the top two blocks
slide against each other. We wish to balance forces on the bottom two blocks together, but we need to
be careful of which direction the friction force points. The top block and the bottom two blocks are both
being pulled by a string but since the top block is lighter, it will be pulled faster. As a result, the kinetic
friction the top two blocks experiences points directly to the right. Balancing forces, we have:

(2m)a =
F

2
+mgµ =⇒ a =

F

4m
+

1

2
gµ

The conditions that has to be met in order for this to take place is: f1 = mgµ and f2 < 2mgµ. For the
second to be satisfied, we can balance forces for the bottommost block. Balancing forces, we have:

m

(
F

4m
+

1

2
gµ

)
=
F

2
− f2 =⇒ f2 =

F

4
− 1

2
mgµ

Using the condition f2 < mgµ, we get:
F

mgµ
< 10

For the first condition to be met, we must have F
mgµ > 6, if this was not the case, then all three blocks

would start sliding together. We can prove this by balancing forces on the middle block. We have:

m

(
F

4
+
mgµ

2

)
= f1 + f2 =⇒ F

4
− f1 +

mgµ

2
< mgµ

Setting f1 = mgµ and isolating for F does indeed give us:

F

mgµ
> 6

(3) This is impossible. If the friction is strong enough such that the top two blocks can move together,
then it must be so that the friction is strong enough the bottom two blocks can move together. This is
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because the normal force between the bottom two blocks will always be stronger than the normal force
between the upper two blocks.

(4) This is an easy case. Balancing forces directly on the second block, we get:

ma = f1 + f2 = mgµ+ 2mgµ =⇒ a = 3gµ

This is the case when the applied force crosses the upper boundary set above, which was F
mgµ < 10.

Therefore, complete slipping occurs when
F

mgµ
> 10

Finally, we can summarize our results:

a =


F

3m
F
mgµ < 6

F
4m + gµ

2 6 < F
mgµ < 10

3gµ F
mgµ > 10

pr 74. During the collision, we can conserve momentum. We have a perfectly inelastic collision where:

mv = (M +m)u =⇒ u =
mv

M +m

However, since the boy continuously pushes against the other boy, the applied force will be mgµ. Bal-
ancing forces, we get:

(m+M)a = µmg − µMg

Dividing through gives the magnitude of the deceleration to be

a =
µg(M −m)

M +m

Thus:

d =
v2

2a
=

(
mv

M+m

)2

2 (M−m)µg
M+m

=
m2v2

2(M2 −m2)µg

pr 75. Energy conservation gives:
1

2
v2 =

1

2
g`(1− sin θ)

where θ is the angle the rod makes with the ground at the point of maximum extension of the string.
We are restricted to a total vertical length of 2` so we have:

H = 2` sin θ =⇒ sin θ =
H

2`

Applying this to our energy conservation expression gives:

v2 = g`(1−H/2`) =⇒ v =
√
g(`−H/2)
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Now, we use idea 44 and notice that horizontal acceleration of the centre must be zero; this follows from
the Newton’s 2nd law for the horizontal motion (there are no horizontal forces at that moment). Further,
notice that the vertical coordinate of the centre of mass is arithmetic average of the coordinates of the
endpoints,

xO =
1

2
(xA + xB)

Noting that xB must be constant, taking the time derivatives gives us

ẋO =
1

2
ẋA

ẍO =
1

2
ẍA

Hence, the acceleration of O can be found as half of the vertical acceleration of the rod’s upper end A;
this is the radial, i.e. centripetal component of the acceleration of point A on its circular motion around
the hanging point. From here, we know from the common formula, that

a =
v2

`

substituting our expression for v2 from part a) gives us

a =
g`(1−H/2`)

`
=⇒ a = g(1−H/2`).

At point xO, the acceleration is then given by
g

2

(
1− H

2`

)
.

Solution 2: First, we make the following claim:

Claim. At any position the potential energy lost is converted into Erotational + Etranslational. i.e.

∆U =
1

2
ICMω

2 +
1

2
mv2

CM

Coincidentally for this system ∆U reaches its maxima and ω becomes 0 at the same time. When the
thread becomes vertical, the angle made by the rod with the ground, β is minimum =⇒ ω = 0.

Proof. If α is the angle made by the thread with the vertical,

l cosα+ l sinβ = H

sinβ =
H − l cosα

l

|α| is always acute here so cosα reaches its maxima and β reaches its minimum at α = 0. At the same
instant, yCM = l sinβ

2 reaches its minima.

When the thread is vertical:

yCM =
H − l

2

Initially:

yCM =
H

4

∴ vmax =

√
2g

(
H

4
− (H − l)

2

)
=

√
g

(
l − H

2

)
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At this instant, let the angular acceleration of the rod be α (into the plane) and COM’s acceleration a
(upwards)

ml2

12
α = (T −N)

l

2
cosβ

T +N −mg = ma

The bottom most point must have 0 vertical acceleration:

α
l

2
cosβ = a

The point connected to thread must have vertical acceleration = v2

l

α
l

2
cosβ + a =

v2

l
= g

(
1− H

2l

)
Also, sinβ = H−l

l Solving gives:

a =
g

2

(
1− H

2l

)
T =

mg

4

(
3 +

l

6H
− H

2l

)

pr 76. First, we make the following claim:

ϕ

Claim. The horizontal component of acceleration in the rod becomes zero at sinϕc = 2
3 .

Proof. Define a coordinate system with origin at the initial position of the lowest point of the rod. At
any instant of time, the coordinates of the centre of mass of the system is PC,ϕ(L2 cosϕ, L2 sinϕ) when
the rod makes an angle ϕ with the horizontal. This means that the locus of the centre of mass is a circle
of radius L

2
a. Since we have

ω =
vx

L sinϕ
=

√
gL sin2 ϕ(1− sinϕ)

L sinϕ
=

√
g

L
(1− sinϕ)

Differentiating gives

α = ϕ̈ =

√
g

L
× 1

2
√

1− sinϕ
×− cosϕ× ϕ̇ = − g

2L
cosϕ

This is the angular acceleration of the centre of mass on its circular orbit. Now, for the top-most point,
we have

ax = ω2L

2
cosϕ− αL

2
sinϕ
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Substituting the values of ω and α found above, we have

ax = g cosϕ(1− 3

2
sinϕ)

which is clearly zero at sinϕc = 2
3 , and we are done.

Proof. Let ϕ be the angle made by the rod with the horizontal. From conserving energy between t = 0
and the moment the top-most point leaves contact, we get

mg
L

2
+ 0 =

1

2
mvx

2 +
1

2
mvy

2 +mg
L

2
sinϕ

⇒ vx =

√
gL sin2 ϕ(1− sinϕ)

Also by definition,

ϕ̇ = ω =
vx sinϕ+ vy cosϕ

L

and by constraint relation, vy = vx cotϕ. Substituting constraint relation in ω, we get

ω =
vx

L sinϕ

Now, for ax, we differentiate vx with time:

ax =
√
gL · sinϕ cosϕ(2− 3 sinϕ)

2
√

sin2 ϕ(1− sinϕ)
· ϕ̇

=
√
gL · sinϕ cosϕ(2− 3 sinϕ)

2
√

sin2 ϕ(1− sinϕ)
·
√
gL sin2 ϕ(1− sinϕ)

L sinϕ

=
gcosϕ

2
(2− 3 sinϕ)

Clearly, ax = 0 at sinϕc = 2
3 and we are done.

Now, from the claim, we have that at sinϕc = 2
3 , ax = 0. At this moment, the horizontal component

of the system’s acceleration is zero (or the horizontal velocity of the system is maximised). Thus there
is no horizontal force on the rod at this moment. Then, if tension exists, every point on the rod would
be accelerating towards each other, and their x-distance would decrease. But the y-distance is also
decreasing, which is a contradiction. Hence, the tension in the rod must be zero at this moment.

Solution 2: Let ϕ be the angle between the rod and the horizontal surface. y is the vertical position of
the upper mass, and y the horizontal position of the lower mass.

x = r cosϕ

ẋ = −r sinϕϕ̇

ẍ = −r sinϕϕ̈− r cosϕϕ̇2

y = r sinϕ

ẏ = r cosϕϕ̇

ÿ = r cosϕϕ̈− r sinϕϕ̇2

By conservation of energy,

1

2
mẋ2 +

1

2
mẏ2 +mg

r

2
sinϕ = mg

r

2
1

2
mr2ϕ̇2 +mg

r

2
sinϕ = mg

r

2
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Taking the derivative with respect to time,

d

dt

[
1

2
mr2ϕ̇2 +mg

r

2
sinϕ

]
=

d

dt

[
mg

r

2

]
ϕ̈ = − g

2r
cosϕ

We may also find with the energy equation that

ϕ̇2 =
g

r
(1− sinϕ)

When the top-most point loses contact with the wall, there is no horizontal force acting on the rod, so
the horizontal acceleration of the rod must be 0. We solve for ϕc such that this happens.

0 = ẍ

= −r sinϕcϕ̈c − r cosϕcϕ̇c
2

= −r sinϕc

(
− g

2r
cosϕc

)
− r cosϕc

(g
r

(1− sinϕc)
)

=
g cosϕc

2
(3 sinϕc − 2)

Hence, we have

sinϕc =
2

3

Fun Fact: Any arbitrary point on the rod undergoes an elliptical motion.

Proof: At any moment, consider a point at a distance r along the rod from its bottom-most point. The
coordinates of this point are simply

Pr,ϕ((L− r) cosϕ, r sinϕ)

or
cosϕ =

x

L− r

sinϕ =
y

r

Thus the locus of this point is (
x

L− r

)2

+
(y
r

)2
= 1

which is an ellipse that degenerates to a circle at L− r = r ⇒ r = L
2 , or the centre of mass of the rod.

Solution 3: Claim 1. The center of mass of the rod moves on a path defined by a circle of radius
R ≡ `/2.
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Proof. Consider the coordinates of the center of mass of the rod given by (`/2 cosϕ, `/2 sinϕ). In other
words, we can write in polar coordinates the position of the center of mass as

cosϕ =
2x

`
, and sinϕ =

2y

`
.

This tells us the path follows a circle given by(
2

`
x

)2

+

(
2

`
y

)2

= 1.

Claim 2. The problem can now be transformed to a point mass sliding down a circle of radius R which
both depart at the same critical angle ϕc.

ϕ

Proof. To prove that this transformation is true, we must prove that all the same fundamental forces are
the same in both setups. In the problem setup of a point sliding down a circle, we note that there are
three fundamental forces which are: the normal force; the centripetal force; and, the gravitational force.

The most obvious force that exists in both setups is the gravitational force which are both of equal mag-
nitude F = mg. Second, since both masses travel in a circular path, they both experience a centripetal
force given by magnitude of F = mv2/R. Lastly, in both setups a normal force that is perpendicular to
the surface of the circle at a certain point in time must exist. In both cases, this exists as the normal force
is vectorially summed up ~N = Nxî + Ny ĵ such that it is opposite to the centripetal force. The nornal
force from the left wall decreases as time passes (when the mass slides down) such that the direction of
the normal force is perpendicular to the differential surface. Hence, the transformation is proved.

Now that we have proved both claims, we are now ready to solve the problem (also Kalda problem 67).
Let us first conserve energy:

mgR = mgR sinϕc +
1

2
mv2 =⇒ v2 = 2gR(1− sinϕc).
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At any point on the circle we have the Newton’s third law pair of

Fg = FN + Fc

however at the point where the object loses contact, the normal force becomes zero. This implies that

mg sinϕc =
mv2

R
=⇒ mgR sinϕc = 2mg(1− sinϕc).

Upon resimplication, we yield that

sinϕc =
2

3
.

aIn fact, it is the quarter of this circle, since the motion is constrained in the first quadrant.

pr 77. Clearly the angular momentum is conserved about any point lying on the line passing through
the rod. For convenience, let us choose the point where the collision occurs:

Mv
`

2
k̂ − M`2

12
ω k̂ = 0⇒ ~ω = −6v

`
k̂

By momentum conservation, we have

Mv = mvf ⇒ vf =
M

m
v

where vf is the final velocity of the puck. Since the collision is elastic,

e = 1 =
(vf )− 0

(v + ω`
2 )− 0

⇒ vf = v +
ω`

2

From these three equations, we obtain
M

m
= 4

Instead of using the equation of the restitution coefficient, we use energy conservation.

1

2
Mv2 +

1

2

(
M`2

12

)
ω2 =

1

2
mvf

2

Solving this equation with the equation for linear and angular momentum conservation yields the same
answer.

pr 78. a) The main difference between the two parts is that in the first part the friction does not act
for the whole time during which the ball is in contact. Once pure rolling is achieved friction becomes
zero. Also because this is an elastic collision and the floor’s mass is much greater than the mass of the
mall, vy is reversed after the collision. So, vy =

√
2gh. This is the same in the two cases. The impulse

due to the normal force is ∫
N dt = m(

√
2gh− (−

√
2gh)) = 2m

√
2gh
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Let the friction force (as a function of time) be f (−î), final velocity in the x− direction be vx and the
angular velocity be ω. Because the point of contact is at rest, vx = ωR. The impulse due to friction is
then,

J =

∫
f dt = m(v0 − vx)

The angular impulse due to friction is∫
fR dt =

2

5
MR2ω =⇒

∫
f dt =

2

5
Mvx

Solving the above two equations gives

vx =
5

7
v0 ω =

5v0

7R

b) Here the friction acts for the entire time while the ball is in contact with the floor. Also f = µN for
the entire time. The impulse due to friction

J =

∫
µN dt = m(v0 − vx) =⇒ vx = v0 − 2µvy

Finally, the angular impulse due to friction is∫
µNRdt =

2

5
MR2ω =⇒ ω =

5µ
√

2gh

R

pr 79. If the coefficient of friction µ surpasses a certain value then the block will start rolling without
slipping, and in turn, will roll with a different total acceleration. This means that before finding the
acceleration of the ball, we must find this coefficient of friction and break the acceleration into two cases.

The coefficient of friction can be found from considering the boundary case of static friction. From

ma = mg sin θ − Fs

and
Iα = Fsr

we get

a = g sin θ − Fs
m

and

α =
Fsr

I

With static friction there is no slipping thus we combine using a = αr to get

Fs =
mI sin θ

I +mr2

Since Fs ≤ Fs,max = µmg cos θ, the angle where the ”rimless wheel” stops rolling without slipping can
be found as

mI sin θ

I +mr2
= µmg cos θ =⇒ tan θ = µ

I +mr2

I
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The moment of inertia of a ball about it’s central axis is 2
5mr

2, so by substituting this we find

µ =
I

I +mr2
tan θ =⇒ µ =

2
5mr

2

2
5mr

2 +mr2
tan θ =

2

7
tan θ.

Now, we have two cases:

Case 1. µ > 2
7 tan θ. The ball will start rolling without slipping down the ramp. We know that

mg sin θ − f = ma

Newton’s second law of rotation gives

−fr = Icmα =⇒ f =
−Icmα

R

Substituting I = 2
5mr

2 into this result for our equation gives us

f =
−
(

2
5mr

2
)

(−acm/r)

r
=

2

5
ma

Taking this result back to our first equation

mg sin θ − 2

5
ma = ma

a =
5

7
g sin θ

Case 2. µ < 2
7 tan θ. The ball will simply slide down the ramp in this case, so we have

mg sin θ − µmg cos θ = ma

a = g sin θ − µg cos θ.

pr 80. The centre of mass of the entire system is initially at rest. The walls of the hoop are frictionless,
which means that there is no net impulse throughout the motion in the horizontal direction. The
impulse due to gravity only pulls the centre of mass downwards after the motion has started, and not in
the horizontal direction. In fact, the hoop first moves rightwards, and after some time, leftwards. When
the block has made an angle of ϕ as in the problem, let it have a velocity of

~vb = vxî− vy ĵ

in the ground frame. Since the momentum is conserved in the horizontal direction, we have

Mv0 = mvx

where v0 is the speed of the hoop’s central point (directed leftward). Now, since the mechanical energy
of the system is conserved, we have

2mgr = mgr(1− cosϕ) +
1

2
Mv0

2 +
1

2
mvb

2

=⇒ mgr(1 + cosϕ) =
1

2
Mv0

2 +
1

2
mvb

2
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Also, one can notice in the hoop’s frame of reference that

tanϕ =
vy

vx + v0

Now we solve these three equations:

1

2
Mv1

2 +
1

2
m(

M

m

√
1 + tan2 ϕ(1 +

m

M
)
2
)

2

= mgR(1 + cosϕ)

Isolating for v1:

v1 =

√
2mgR(1 + cosϕ)

M(1 + M
m tan2 ϕ(1 + m

M )2)

=

√
2m2gR(1 + cosϕ) cos2 ϕ

Mm cos2 ϕ+M2 +m2 sin2 ϕ+ 2Mm sin2 ϕ

=

√
2m2 cos2 ϕ(1 + cosϕ)gR

(M +m)(M +m sin2 ϕ)

= m cosϕ

√
2gR(1 + cosϕ)

(M +m)(M +m sin2 ϕ)

Now, for the acceleration of the hoop, we use Newton’s second law of motion in the non-inertial frame
of the hoop. For this, let the acceleration of the hoop’s centre at the moment be a0, directed leftwards.
At this moment, suppose the acceleration of the block in the ground frame ~ab = acr̂ + atθ̂. In the frame
of the hoop in the r̂ direction, the block’s radial acceleration is simply

ab,hr = ac − a0 sinϕ

By Newton’s second law on the hoop in the horizontal direction, we have

N sinϕ = Ma0

where N is the normal force exerted by the block on the hoop. In the frame of the hoop, force balancing
on the block in the radial direction yields the equation

N −mg cosϕ = mab,hr = m
(vb + v0 cosϕ)2

R

From these equations, we have

a0 =
sinϕ

M

(
2m3 cos2 ϕ(1 + cosϕ)

(M +m)(M +m sin2 ϕ)

(
M2

m2
(tan2 ϕ

(
1 +

m

M

)2

+ cos2 ϕ+ 2
M

m
cosϕ

√
1 + tan2 ϕ

(
1 +

m

M

)2
)

+mg cosϕ

)

which on simplifying gives

a =
mg sin 2φ

M +m sin2 φ

(
1

2
+

(M +m)(1 + cosφ)

cosφ(M +m sin2 φ)

)

79



Kalda Mechanics 80

Let v1 be the velocity of of the block relative to the hoop, and it will be directed tangent to the hoop. Let
v2 represent the velocity of the hoop relative to the ground. Conservation of linear horizontal momentum
gives us:

m(v1 cosφ− v2) = Mv2

because the net force on the system is zero. Conservation of energy gives us:

1

2
Mv2

2 +
1

2
m(v2

1 + v2
2 + 2v1v2 cos(π − φ)) = mgR(1 + cosφ)

Solving, we have:

v1 =

√
2(M +m)gR(1 + cosφ)

M +m sin2 φ

v2 = m cosϕ

√
2gR(1 + cosϕ)

(M +m)(M +m sin2 ϕ)

Now, in the hoop’s frame the block does circular motion and thus the only radial component of acceler-
ation is

ar =
v2

1

R

Let the hoop’s acceleration be a2 (directed horizontally backwards). Therefore in ground frame the net
radial acceleration of the block is:

= ar − a2 sinφ

Applying Newton’s second law on both gives:

N sinφ = Ma2

where N is exerted by hoop on block towards the centre. Finally,

N −mg cosφ = m(ar − a2 sinφ) = m(
v2

1

R
− a2 sinφ)

Solving givesa

a2 =
mg sin 2φ

M +m sin2 φ

(
1

2
+

(M +m)(1 + cosφ)

cosφ(M +m sin2 φ)

)
aNote that the two solutions provided in the text essentially use the same idea. Both the solutions have been provided

to show that working in the relative frame of the hoop is a much more convenient way to obtain the answers.
aThis problem was found in the book ’Aptitude Test Problems in Physics’ by S.S. Krotov though in that problem, only

velocity was asked for.

pr 81. First, let us notice that the period of oscillations T = 0.01 s is extremely small, so any deviation
in the velocity caused by friction can be ignored if we only focus on the average velocity. We assume
that the block travels at a constant velocity u rightwards in the positive direction. Let us examine the
movement qualitatively.

As the board starts moving rightwards, it is important to note that the velocity of the block relative
to the board is rightwards, so the friction force mgµ1 points leftwards. This goes on for a time t1 until
the velocity of the board matches the velocity of the block and overtakes it. This goes on for a time
t2 where the board reaches a maximum and starts to slow down all the way until it has a velocity of u
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again. During this time period, the friction force points to the right with a magnitude mgµ2. Finally,
for a time t3 = t1, the board is still moving towards the right but the friction force points towards the
left. The total duration is t1 + t2 + t3 = T/2.

Finally, the board starts travelling in the leftwards direction. The friction force here is a constant mgµ1

directed towards the left and lasts for a time t4 = T/2

Now let’s do the math. Let’s work with the assumption we made that the block has a roughly constant
average velocity. If this was not the case, then friction forces would either speed it up or slow it down
until the motion is roughly constant. As a result, the total change in momentum, or impulse is zero. We
have:

(−mgµ1)t1 + (mgµ2)t2 + (−mgµ1)t3 + (−mgµ1)t4 = 0

Letting t1 = t3 we get:
µ2t2 = µ1t4 + 2µ1t1

Having 2t1 + t2 = t4 then we have:

µ2(t4 − 2t1) = µ1t4 + 2µ2t1 =⇒ (µ2 − µ1)t4 = 4µ1t1

or:

t1 =
(µ2 − µ1)t4
2(µ2 + µ1)

Since t4 = 0.005 s we get:

t1 =
t4
8

this is an eighth of half a period and corresponds to the time where the board has the same velocity as
the block. I put this through a visual program and determined this corresponds to 0.64 m/s. To one

significant digit, , the average velocity of the board is v = 0.6 m/s

pr 82. As the water moving with a speed v collides completely inelastically with the paddles moving

with a speed u, a momentum of dp = dm(v− u) is imparted to the paddles so the force on the paddle is
F = µ(v − u) where in the frame of the paddle,

µ = ρS(v − u)

The power is therefore:
P = Fu = ρS(v − u)2u

We can maximize this by taking the derivative and set it to zero, or when:

3u2 − 4vu+ v2 = 0

This gives u = v/3 or u = v. Obviously, u = v would give the minimum power so u = v/3 gives the
maximum power to be:

Pmax =
4

27
ρSv3

Moving back to the lab frame, we have
µ = ρSv

or:

Pmax =
4

27
µv2
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pr 83. Note that the velocity vector in the picture is drawn wrong, it should be normal to the board.

Since the board is flat, we wish to move into a reference frame where the velocity of the board is parallel to
its surface. We also want the stream lines of the water to be nice, so we don’t want a vertical component
of the water’s velocity in the new reference frame. Thus, a reference frame moving with velocity v/ cosα
to the left will used, where the board’s velocity is parallel to its surface (thus can be ignored) and the
water is flowing horizontally.

The setup now is very similar to that of problem 53. The water is flowing to a wall with velocity
v/ cosα to the right, and Bernoulli’s equation along the stream line near the surface (constant pressure,
no significant change in height) tells us that the water will be directed with the same speed of v/ cosα
and along the surface of the board.

Now that we have the velocity of the water in the frame of the board, we shift back to the lab frame.
Adding the velocity vectors of equal magnitudes of v/ cosα with one horizontally to the left and one at
an angle α from the vertical gives

~u = −
( v

cosα
+ v tanα

)
î+ v ĵ ⇒ u = v

√
1 +

(
1 + sinα

cosα

)

⇒ u =
v

cosα

√
2(1 + sinα) =

2v

cosα
cos
(π

4
− α

2

)

pr 84. Before we solve the problem, let us build some intuition for what is happening. As the wagon
accelerates, the new equilibrium position will start oscillating around a new equilibrium angle θ. This
angle is very small and therefore we can assume it undergoes small angle oscillations with an amplitude
of θ. Every time it gets back to its vertical position, it will be stationary. We want it such that after it
travels a distance L, the load is in this position.

We propose that at the moment the wagon starts decelerating, the load must also be in the vertical
direction and motionless. This is because as soon as it starts decelerating, there will be a new equilibrium
angle of −θ. If we want the magnitude of the amplitudes to stay the same, we need the position of the
load to be vertical as it starts decelerating.

With this intuition, it is not difficult to solve the problem as we only need to focus on one half of the
journey. In the time t it takes to travel a distance L/2, the load must have undergone N full oscillations.
This can be rewritten as:

t = NT

where T = 2π
√

`√
g2+a2

is the period of oscillations. However, since a � g, we can ignore the second

order term and rewrite the period with the standard equation: T = 2π
√

`
g

The time it takes to travel half the length can be determined using simple kinematics. We have:

L

2
=

1

2
at2 =⇒ t =

√
L

a

Using the condition we stated, we can link the two times together:√
L

a
= 2πN

√
`

g
=⇒ a =

Lg

N24π2`
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for all positive integers N provided that a� g.

pr 85. Let us first consider the case of the triangular prism. We shall do this by looking at the force
caused by the shockwave at a particular moment. The force exerted at any particular point is:

F = S(p1 − p0)

where S is the cross sectional area at that point. We shall assume that the shock-wave passes through
the object extremely quickly so throughout the entire process the object is stationary and only moves
with the momentum imparted after it has passed. The impulse is thus:

J =

∫
S(p1 − p0)dt

where dt = dx/cs and the area of the cross section varies with x as S = c(−ba x+ b). Plugging this in, we
can determine the change in momentum as:

J = m∆v =
c(p1 − p0)

cs

∫ a

0

(
−b
a
x+ b

)
dx =⇒ ∆v =

p1 − p0

mcs

(
abc

2

)
Note however that the volume of the triangular prism is also V = 1

2abc. We can therefore generalize this
result to any arbitrary shape. As before, the impulse is given by:

m∆v =
p1 − p0

cs

∫
S(x)dx

where

∫
S(x)dx gives the volume. Therefore, the change in velocity for any shape, including the trian-

gular prism above after a shock-wave passes through is:

∆v =
V (p1 − p0)

mcs

pr 86. The rod will act like a spring (since the rod is thin and made out of steel, while steel is elastic).
After the left sphere has collided with the stationary sphere, the latter will acquire velocity v0 and the
former will stay at rest. Using momentum conservation when considering the entire system at impact,
we find that,

(2m)v0 = mv0 + (2m)vf =⇒ vf =
1

2
v0.

We can then compare the initial and final kinetic energies

Ki =
1

2
(2m)v2

0 = mv2
0

Kf =
1

2
(2m)v2

f +
1

2
mv2

0 =
3

4
mv2

0

Here, we can see that kinetic energy is not conserved. However, we still do not know where this energy
goes to. The dumbbell, as a system of spheres and springs, will begin oscillating around its centre of
mass. After a half period the dumbbell will be too far away to expand outwards and hit the mass again.
Thus, we can say that the rest of the energy is stored in the oscillating dumbbell after.
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